Fix issues when providing diagonal matrix sqrt

This commit is contained in:
Dominik Moritz Roth 2024-01-26 12:39:56 +01:00
parent 7ad4858e8a
commit f129928635
4 changed files with 27 additions and 14 deletions

View File

@ -27,11 +27,14 @@ def get_mean_and_chol(p: AnyDistribution, expand=False):
def get_mean_and_sqrt(p: UniversalGaussianDistribution, expand=False): def get_mean_and_sqrt(p: UniversalGaussianDistribution, expand=False):
mean, chol = get_mean_and_chol(p, expand=False)
if not hasattr(p, 'cov_sqrt'): if not hasattr(p, 'cov_sqrt'):
if len(p.distribution.scale.shape)==2: # In the factorized case, chol = matSqrt
sqrt_cov = p.distribution.scale
else:
raise Exception( raise Exception(
'Distribution was not induced from sqrt. On-demand calculation is not supported.') 'Distribution was not induced from sqrt. On-demand calculation is not supported.')
else: else:
mean, chol = get_mean_and_chol(p, expand=False)
sqrt_cov = p.cov_sqrt sqrt_cov = p.cov_sqrt
if mean.shape[0] != sqrt_cov.shape[0]: if mean.shape[0] != sqrt_cov.shape[0]:
shape = list(sqrt_cov.shape) shape = list(sqrt_cov.shape)
@ -123,12 +126,14 @@ def new_dist_like_from_sqrt(orig_p: AnyDistribution, mean: th.Tensor, cov_sqrt:
def _sqrt_to_chol(cov_sqrt, only_diag=False): def _sqrt_to_chol(cov_sqrt, only_diag=False):
if only_diag:
return cov_sqrt
cov = th.bmm(cov_sqrt.mT, cov_sqrt) cov = th.bmm(cov_sqrt.mT, cov_sqrt)
cov += th.eye(cov.shape[-1]).expand(cov.shape)*(1e-6) cov += th.eye(cov.shape[-1]).expand(cov.shape)*(1e-6)
chol = th.linalg.cholesky(cov) chol = th.linalg.cholesky(cov)
if only_diag: #if only_diag:
chol = th.diagonal(chol, dim1=-2, dim2=-1) # chol = th.diagonal(chol, dim1=-2, dim2=-1)
return chol return chol

View File

@ -86,6 +86,7 @@ class BaseProjectionLayer(object):
Returns: Returns:
projected_dist, old_dist (from rollouts) projected_dist, old_dist (from rollouts)
""" """
old_distribution = self.new_dist_like(dist, rollout_data.mean, rollout_data.cov_decomp) old_distribution = self.new_dist_like(dist, rollout_data.mean, rollout_data.cov_decomp)
return self(dist, old_distribution, **kwargs), old_distribution return self(dist, old_distribution, **kwargs), old_distribution

View File

@ -4,7 +4,7 @@ from typing import Tuple
from .base_projection_layer import BaseProjectionLayer, mean_projection from .base_projection_layer import BaseProjectionLayer, mean_projection
from ..misc.norm import mahalanobis, frob_sq from ..misc.norm import mahalanobis, frob_sq
from ..misc.distTools import get_mean_and_chol, get_cov, new_dist_like from ..misc.distTools import get_mean_and_chol, get_cov, new_dist_like, has_diag_cov
class FrobeniusProjectionLayer(BaseProjectionLayer): class FrobeniusProjectionLayer(BaseProjectionLayer):
@ -57,6 +57,9 @@ class FrobeniusProjectionLayer(BaseProjectionLayer):
else: else:
proj_chol = chol proj_chol = chol
if has_diag_cov(p):
proj_chol = th.diagonal(proj_chol, dim1=-2, dim2=-1)
proj_p = new_dist_like(p, proj_mean, proj_chol) proj_p = new_dist_like(p, proj_mean, proj_chol)
return proj_p return proj_p

View File

@ -63,6 +63,9 @@ class WassersteinProjectionLayer(BaseProjectionLayer):
else: else:
proj_sqrt = sqrt proj_sqrt = sqrt
if has_diag_cov(p):
proj_sqrt = th.diagonal(proj_sqrt, dim1=-2, dim2=-1)
proj_p = new_dist_like_from_sqrt(p, proj_mean, proj_sqrt) proj_p = new_dist_like_from_sqrt(p, proj_mean, proj_sqrt)
return proj_p return proj_p
@ -110,6 +113,7 @@ class WassersteinProjectionLayer(BaseProjectionLayer):
mean, scale_tril=cov_sqrt) mean, scale_tril=cov_sqrt)
else: else:
raise Exception('Dist-Type not implemented (of sb3 dist)') raise Exception('Dist-Type not implemented (of sb3 dist)')
p_out.cov_sqrt = cov_sqrt
return p_out return p_out