222 lines
7.4 KiB
Python
222 lines
7.4 KiB
Python
from typing import Any, Dict, Optional, Type, Union, Tuple, final
|
|
|
|
import torch as th
|
|
|
|
from stable_baselines3.common.distributions import kl_divergence
|
|
from stable_baselines3.common.distributions import Distribution
|
|
|
|
from ..misc.distTools import *
|
|
|
|
|
|
class BaseProjectionLayer(object):
|
|
|
|
def __init__(self,
|
|
mean_bound: float = 0.03,
|
|
cov_bound: float = 1e-3,
|
|
trust_region_coeff: float = 1.0,
|
|
scale_prec: bool = True,
|
|
do_entropy_proj: bool = False,
|
|
entropy_eq: bool = False,
|
|
entropy_first: bool = False,
|
|
):
|
|
self.mean_bound = mean_bound
|
|
self.cov_bound = cov_bound
|
|
self.trust_region_coeff = trust_region_coeff
|
|
self.do_entropy_proj = do_entropy_proj
|
|
self.entropy_first = scale_prec
|
|
self.scale_prec = scale_prec
|
|
self.mean_eq = False
|
|
|
|
self.entropy_first = entropy_first
|
|
self.entropy_proj = entropy_equality_projection if entropy_eq else entropy_inequality_projection
|
|
|
|
def __call__(self, p, q, step, *args, **kwargs):
|
|
# TODO: self.entropy_schedule(self.initial_entropy, self.target_entropy, self.temperature, step) * p[0].new_ones(p[0].shape[0])
|
|
entropy_bound = 'lol'
|
|
return self._projection(p, q, eps=self.mean_bound, eps_cov=self.cov_bound, beta=entropy_bound, **kwargs)
|
|
|
|
@final
|
|
def _projection(self, p, q, eps: th.Tensor, eps_cov: th.Tensor, beta: th.Tensor, **kwargs):
|
|
"""
|
|
Template method with hook _trust_region_projection() to encode specific functionality.
|
|
(Optional) entropy projection is executed before or after as specified by entropy_first.
|
|
Do not override this. For Python >= 3.8 you can use the @final decorator to enforce not overwriting.
|
|
Args:
|
|
policy: policy instance
|
|
p: current distribution
|
|
q: old distribution
|
|
eps: mean trust region bound
|
|
eps_cov: covariance trust region bound
|
|
beta: entropy bound
|
|
**kwargs:
|
|
|
|
Returns:
|
|
projected mean, projected std
|
|
"""
|
|
|
|
####################################################################################################################
|
|
# entropy projection in the beginning
|
|
if self.do_entropy_proj and self.entropy_first:
|
|
p = self.entropy_proj(p, beta)
|
|
|
|
####################################################################################################################
|
|
# trust region projection for mean and cov bounds
|
|
new_p = self._trust_region_projection(
|
|
p, q, eps, eps_cov, **kwargs)
|
|
|
|
####################################################################################################################
|
|
# entropy projection in the end
|
|
if not self.do_entropy_proj or self.entropy_first:
|
|
return new_p
|
|
|
|
return self.entropy_proj(new_p, beta)
|
|
|
|
def _trust_region_projection(self, p, q, eps: th.Tensor, eps_cov: th.Tensor, **kwargs):
|
|
"""
|
|
Hook for implementing the specific trust region projection
|
|
Args:
|
|
p: current distribution
|
|
q: old distribution
|
|
eps: mean trust region bound
|
|
eps_cov: covariance trust region bound
|
|
**kwargs:
|
|
|
|
Returns:
|
|
projected
|
|
"""
|
|
return p
|
|
|
|
def get_trust_region_loss(self, p, proj_p):
|
|
# p:
|
|
# predicted distribution from network output
|
|
# proj_p:
|
|
# projected distribution
|
|
|
|
proj_mean, proj_chol = get_mean_and_chol(proj_p)
|
|
p_target = new_dist_like(p, proj_mean, proj_chol)
|
|
kl_diff = self.trust_region_value(p, p_target)
|
|
|
|
kl_loss = kl_diff.mean()
|
|
|
|
return kl_loss * self.trust_region_coeff
|
|
|
|
def trust_region_value(self, p, q):
|
|
"""
|
|
Computes the KL divergence between two Gaussian distributions p and q_values.
|
|
Returns:
|
|
full kl divergence
|
|
"""
|
|
return kl_divergence(p, q)
|
|
|
|
|
|
def entropy_inequality_projection(p: th.distributions.Normal,
|
|
beta: Union[float, th.Tensor]):
|
|
"""
|
|
Stolen and adapted from Fabian's Code (Public Version)
|
|
|
|
Projects std to satisfy an entropy INEQUALITY constraint.
|
|
Args:
|
|
p: current distribution
|
|
beta: target entropy for EACH std or general bound for all stds
|
|
|
|
Returns:
|
|
projected std that satisfies the entropy bound
|
|
"""
|
|
mean, std = p.mean, p.stddev
|
|
k = std.shape[-1]
|
|
batch_shape = std.shape[:-2]
|
|
|
|
ent = p.entropy()
|
|
mask = ent < beta
|
|
|
|
# if nothing has to be projected skip computation
|
|
if (~mask).all():
|
|
return p
|
|
|
|
alpha = th.ones(batch_shape, dtype=std.dtype, device=std.device)
|
|
alpha[mask] = th.exp((beta[mask] - ent[mask]) / k)
|
|
|
|
proj_std = th.einsum('ijk,i->ijk', std, alpha)
|
|
new_mean, new_std = mean, th.where(mask[..., None, None], proj_std, std)
|
|
return th.distributions.Normal(new_mean, new_std)
|
|
|
|
|
|
def entropy_equality_projection(p: th.distributions.Normal,
|
|
beta: Union[float, th.Tensor]):
|
|
"""
|
|
Stolen and adapted from Fabian's Code (Public Version)
|
|
|
|
Projects std to satisfy an entropy EQUALITY constraint.
|
|
Args:
|
|
p: current distribution
|
|
beta: target entropy for EACH std or general bound for all stds
|
|
|
|
Returns:
|
|
projected std that satisfies the entropy bound
|
|
"""
|
|
mean, std = p.mean, p.stddev
|
|
k = std.shape[-1]
|
|
|
|
ent = p.entropy()
|
|
alpha = th.exp((beta - ent) / k)
|
|
proj_std = th.einsum('ijk,i->ijk', std, alpha)
|
|
new_mean, new_std = mean, proj_std
|
|
return th.distributions.Normal(new_mean, new_std)
|
|
|
|
|
|
def mean_projection(mean: th.Tensor, old_mean: th.Tensor, maha: th.Tensor, eps: th.Tensor):
|
|
"""
|
|
Stolen from Fabian's Code (Private Version)
|
|
|
|
Projects the mean based on the Mahalanobis objective and trust region.
|
|
Args:
|
|
mean: current mean vectors
|
|
old_mean: old mean vectors
|
|
maha: Mahalanobis distance between the two mean vectors
|
|
eps: trust region bound
|
|
|
|
Returns:
|
|
projected mean that satisfies the trust region
|
|
"""
|
|
batch_shape = mean.shape[:-1]
|
|
mask = maha > eps
|
|
|
|
################################################################################################################
|
|
# mean projection maha
|
|
|
|
# if nothing has to be projected skip computation
|
|
if mask.any():
|
|
omega = th.ones(batch_shape, dtype=mean.dtype, device=mean.device)
|
|
omega[mask] = th.sqrt(maha[mask] / eps) - 1.
|
|
omega = th.max(-omega, omega)[..., None]
|
|
|
|
m = (mean + omega * old_mean) / (1 + omega + 1e-16)
|
|
proj_mean = th.where(mask[..., None], m, mean)
|
|
else:
|
|
proj_mean = mean
|
|
|
|
return proj_mean
|
|
|
|
|
|
def mean_equality_projection(mean: th.Tensor, old_mean: th.Tensor, maha: th.Tensor, eps: th.Tensor):
|
|
"""
|
|
Stolen from Fabian's Code (Private Version)
|
|
|
|
Projections the mean based on the Mahalanobis objective and trust region for an EQUALITY constraint.
|
|
Args:
|
|
mean: current mean vectors
|
|
old_mean: old mean vectors
|
|
maha: Mahalanobis distance between the two mean vectors
|
|
eps: trust region bound
|
|
Returns:
|
|
projected mean that satisfies the trust region
|
|
"""
|
|
|
|
maha[maha == 0] += 1e-16
|
|
omega = th.sqrt(maha / eps) - 1.
|
|
omega = omega[..., None]
|
|
|
|
proj_mean = (mean + omega * old_mean) / (1 + omega + 1e-16)
|
|
|
|
return proj_mean
|