metastable-projections/projections/base_projection_layer.py
2022-09-03 11:22:29 +02:00

222 lines
7.4 KiB
Python

from typing import Any, Dict, Optional, Type, Union, Tuple, final
import torch as th
from stable_baselines3.common.distributions import kl_divergence
from stable_baselines3.common.distributions import Distribution
from ..misc.distTools import *
class BaseProjectionLayer(object):
def __init__(self,
mean_bound: float = 0.03,
cov_bound: float = 1e-3,
trust_region_coeff: float = 1.0,
scale_prec: bool = True,
do_entropy_proj: bool = False,
entropy_eq: bool = False,
entropy_first: bool = False,
):
self.mean_bound = mean_bound
self.cov_bound = cov_bound
self.trust_region_coeff = trust_region_coeff
self.do_entropy_proj = do_entropy_proj
self.entropy_first = scale_prec
self.scale_prec = scale_prec
self.mean_eq = False
self.entropy_first = entropy_first
self.entropy_proj = entropy_equality_projection if entropy_eq else entropy_inequality_projection
def __call__(self, p, q, step, *args, **kwargs):
# TODO: self.entropy_schedule(self.initial_entropy, self.target_entropy, self.temperature, step) * p[0].new_ones(p[0].shape[0])
entropy_bound = 'lol'
return self._projection(p, q, eps=self.mean_bound, eps_cov=self.cov_bound, beta=entropy_bound, **kwargs)
@final
def _projection(self, p, q, eps: th.Tensor, eps_cov: th.Tensor, beta: th.Tensor, **kwargs):
"""
Template method with hook _trust_region_projection() to encode specific functionality.
(Optional) entropy projection is executed before or after as specified by entropy_first.
Do not override this. For Python >= 3.8 you can use the @final decorator to enforce not overwriting.
Args:
policy: policy instance
p: current distribution
q: old distribution
eps: mean trust region bound
eps_cov: covariance trust region bound
beta: entropy bound
**kwargs:
Returns:
projected mean, projected std
"""
####################################################################################################################
# entropy projection in the beginning
if self.do_entropy_proj and self.entropy_first:
p = self.entropy_proj(p, beta)
####################################################################################################################
# trust region projection for mean and cov bounds
new_p = self._trust_region_projection(
p, q, eps, eps_cov, **kwargs)
####################################################################################################################
# entropy projection in the end
if not self.do_entropy_proj or self.entropy_first:
return new_p
return self.entropy_proj(new_p, beta)
def _trust_region_projection(self, p, q, eps: th.Tensor, eps_cov: th.Tensor, **kwargs):
"""
Hook for implementing the specific trust region projection
Args:
p: current distribution
q: old distribution
eps: mean trust region bound
eps_cov: covariance trust region bound
**kwargs:
Returns:
projected
"""
return p
def get_trust_region_loss(self, p, proj_p):
# p:
# predicted distribution from network output
# proj_p:
# projected distribution
proj_mean, proj_chol = get_mean_and_chol(proj_p)
p_target = new_dist_like(p, proj_mean, proj_chol)
kl_diff = self.trust_region_value(p, p_target)
kl_loss = kl_diff.mean()
return kl_loss * self.trust_region_coeff
def trust_region_value(self, p, q):
"""
Computes the KL divergence between two Gaussian distributions p and q_values.
Returns:
full kl divergence
"""
return kl_divergence(p, q)
def entropy_inequality_projection(p: th.distributions.Normal,
beta: Union[float, th.Tensor]):
"""
Stolen and adapted from Fabian's Code (Public Version)
Projects std to satisfy an entropy INEQUALITY constraint.
Args:
p: current distribution
beta: target entropy for EACH std or general bound for all stds
Returns:
projected std that satisfies the entropy bound
"""
mean, std = p.mean, p.stddev
k = std.shape[-1]
batch_shape = std.shape[:-2]
ent = p.entropy()
mask = ent < beta
# if nothing has to be projected skip computation
if (~mask).all():
return p
alpha = th.ones(batch_shape, dtype=std.dtype, device=std.device)
alpha[mask] = th.exp((beta[mask] - ent[mask]) / k)
proj_std = th.einsum('ijk,i->ijk', std, alpha)
new_mean, new_std = mean, th.where(mask[..., None, None], proj_std, std)
return th.distributions.Normal(new_mean, new_std)
def entropy_equality_projection(p: th.distributions.Normal,
beta: Union[float, th.Tensor]):
"""
Stolen and adapted from Fabian's Code (Public Version)
Projects std to satisfy an entropy EQUALITY constraint.
Args:
p: current distribution
beta: target entropy for EACH std or general bound for all stds
Returns:
projected std that satisfies the entropy bound
"""
mean, std = p.mean, p.stddev
k = std.shape[-1]
ent = p.entropy()
alpha = th.exp((beta - ent) / k)
proj_std = th.einsum('ijk,i->ijk', std, alpha)
new_mean, new_std = mean, proj_std
return th.distributions.Normal(new_mean, new_std)
def mean_projection(mean: th.Tensor, old_mean: th.Tensor, maha: th.Tensor, eps: th.Tensor):
"""
Stolen from Fabian's Code (Private Version)
Projects the mean based on the Mahalanobis objective and trust region.
Args:
mean: current mean vectors
old_mean: old mean vectors
maha: Mahalanobis distance between the two mean vectors
eps: trust region bound
Returns:
projected mean that satisfies the trust region
"""
batch_shape = mean.shape[:-1]
mask = maha > eps
################################################################################################################
# mean projection maha
# if nothing has to be projected skip computation
if mask.any():
omega = th.ones(batch_shape, dtype=mean.dtype, device=mean.device)
omega[mask] = th.sqrt(maha[mask] / eps) - 1.
omega = th.max(-omega, omega)[..., None]
m = (mean + omega * old_mean) / (1 + omega + 1e-16)
proj_mean = th.where(mask[..., None], m, mean)
else:
proj_mean = mean
return proj_mean
def mean_equality_projection(mean: th.Tensor, old_mean: th.Tensor, maha: th.Tensor, eps: th.Tensor):
"""
Stolen from Fabian's Code (Private Version)
Projections the mean based on the Mahalanobis objective and trust region for an EQUALITY constraint.
Args:
mean: current mean vectors
old_mean: old mean vectors
maha: Mahalanobis distance between the two mean vectors
eps: trust region bound
Returns:
projected mean that satisfies the trust region
"""
maha[maha == 0] += 1e-16
omega = th.sqrt(maha / eps) - 1.
omega = omega[..., None]
proj_mean = (mean + omega * old_mean) / (1 + omega + 1e-16)
return proj_mean