This commit is contained in:
kngwyu 2020-05-21 19:05:06 +09:00
commit 034bd64990
13 changed files with 1354 additions and 0 deletions

7
.gitignore vendored Normal file
View File

@ -0,0 +1,7 @@
*.pyc
**/__pycache__/
**/.pytest_cache/
**/dist/
**/build/
**/*.egg-info/
**/.mypy_cache/

201
LICENSE Normal file
View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2020 Yuji Kanagawa
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

17
README.md Normal file
View File

@ -0,0 +1,17 @@
# mujoco-maze
Some maze environments for reinforcement learning(RL) using [mujoco-py] and
[openai gym][gym].
Thankfully, this project is based on the code from [tensorflow/models][models], [rllab]
and [deep-skill-chaining][dsc].
## License
This project is licensed under Apache License, Version 2.0
([LICENSE-APACHE](LICENSE) or http://www.apache.org/licenses/LICENSE-2.0).
[dsc]: https://github.com/deep-skill-chaining/deep-skill-chaining
[gym]: https://github.com/openai/gym
[models]: https://github.com/tensorflow/models/tree/master/research/efficient-hrl
[mujoco-py]: https://github.com/openai/mujoco-py
[rllab]: https://github.com/rll/rllab

1
mujoco_maze/__init__.py Normal file
View File

@ -0,0 +1 @@

156
mujoco_maze/ant.py Normal file
View File

@ -0,0 +1,156 @@
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Wrapper for creating the ant environment in gym_mujoco."""
import math
import numpy as np
import mujoco_py
from gym import utils
from gym.envs.mujoco import mujoco_env
def q_inv(a):
return [a[0], -a[1], -a[2], -a[3]]
def q_mult(a, b): # multiply two quaternion
w = a[0] * b[0] - a[1] * b[1] - a[2] * b[2] - a[3] * b[3]
i = a[0] * b[1] + a[1] * b[0] + a[2] * b[3] - a[3] * b[2]
j = a[0] * b[2] - a[1] * b[3] + a[2] * b[0] + a[3] * b[1]
k = a[0] * b[3] + a[1] * b[2] - a[2] * b[1] + a[3] * b[0]
return [w, i, j, k]
class AntEnv(mujoco_env.MujocoEnv, utils.EzPickle):
FILE = "ant.xml"
ORI_IND = 3
def __init__(
self,
file_path=None,
expose_all_qpos=True,
expose_body_coms=None,
expose_body_comvels=None,
):
self._expose_all_qpos = expose_all_qpos
self._expose_body_coms = expose_body_coms
self._expose_body_comvels = expose_body_comvels
self._body_com_indices = {}
self._body_comvel_indices = {}
mujoco_env.MujocoEnv.__init__(self, file_path, 5)
utils.EzPickle.__init__(self)
@property
def physics(self):
# check mujoco version is greater than version 1.50 to call correct physics
# model containing PyMjData object for getting and setting position/velocity
# check https://github.com/openai/mujoco-py/issues/80 for updates to api
if mujoco_py.get_version() >= "1.50":
return self.sim
else:
return self.model
def _step(self, a):
return self.step(a)
def step(self, a):
xposbefore = self.get_body_com("torso")[0]
self.do_simulation(a, self.frame_skip)
xposafter = self.get_body_com("torso")[0]
forward_reward = (xposafter - xposbefore) / self.dt
ctrl_cost = 0.5 * np.square(a).sum()
survive_reward = 1.0
reward = forward_reward - ctrl_cost + survive_reward
_ = self.state_vector()
done = False
ob = self._get_obs()
return (
ob,
reward,
done,
dict(
reward_forward=forward_reward,
reward_ctrl=-ctrl_cost,
reward_survive=survive_reward,
),
)
def _get_obs(self):
# No cfrc observation
if self._expose_all_qpos:
obs = np.concatenate(
[
self.physics.data.qpos.flat[:15], # Ensures only ant obs.
self.physics.data.qvel.flat[:14],
]
)
else:
obs = np.concatenate(
[self.physics.data.qpos.flat[2:15], self.physics.data.qvel.flat[:14],]
)
if self._expose_body_coms is not None:
for name in self._expose_body_coms:
com = self.get_body_com(name)
if name not in self._body_com_indices:
indices = range(len(obs), len(obs) + len(com))
self._body_com_indices[name] = indices
obs = np.concatenate([obs, com])
if self._expose_body_comvels is not None:
for name in self._expose_body_comvels:
comvel = self.get_body_comvel(name)
if name not in self._body_comvel_indices:
indices = range(len(obs), len(obs) + len(comvel))
self._body_comvel_indices[name] = indices
obs = np.concatenate([obs, comvel])
return obs
def reset_model(self):
qpos = self.init_qpos + self.np_random.uniform(
size=self.model.nq, low=-0.1, high=0.1
)
qvel = self.init_qvel + self.np_random.randn(self.model.nv) * 0.1
# Set everything other than ant to original position and 0 velocity.
qpos[15:] = self.init_qpos[15:]
qvel[14:] = 0.0
self.set_state(qpos, qvel)
return self._get_obs()
def viewer_setup(self):
self.viewer.cam.distance = self.model.stat.extent * 0.5
def get_ori(self):
ori = [0, 1, 0, 0]
rot = self.physics.data.qpos[
self.__class__.ORI_IND : self.__class__.ORI_IND + 4
] # take the quaternion
ori = q_mult(q_mult(rot, ori), q_inv(rot))[1:3] # project onto x-y plane
ori = math.atan2(ori[1], ori[0])
return ori
def set_xy(self, xy):
qpos = np.copy(self.physics.data.qpos)
qpos[0] = xy[0]
qpos[1] = xy[1]
qvel = self.physics.data.qvel
self.set_state(qpos, qvel)
def get_xy(self):
return self.physics.data.qpos[:2]

View File

@ -0,0 +1,21 @@
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from environments.maze_env import MazeEnv
from environments.ant import AntEnv
class AntMazeEnv(MazeEnv):
MODEL_CLASS = AntEnv

81
mujoco_maze/assets/ant.xml Executable file
View File

@ -0,0 +1,81 @@
<mujoco model="ant">
<compiler inertiafromgeom="true" angle="degree" coordinate="local" />
<option timestep="0.02" integrator="RK4" />
<custom>
<numeric name="init_qpos" data="0.0 0.0 0.55 1.0 0.0 0.0 0.0 0.0 1.0 0.0 -1.0 0.0 -1.0 0.0 1.0" />
</custom>
<default>
<joint limited="true" armature="1" damping="1" />
<geom condim="3" conaffinity="0" margin="0.01" friction="1 0.5 0.5" solref=".02 1" solimp=".8 .8 .01" rgba="0.8 0.6 0.4 1" density="5.0" />
</default>
<asset>
<texture type="skybox" builtin="gradient" width="100" height="100" rgb1="1 1 1" rgb2="0 0 0" />
<texture name="texgeom" type="cube" builtin="flat" mark="cross" width="127" height="1278" rgb1="0.8 0.6 0.4" rgb2="0.8 0.6 0.4" markrgb="1 1 1" random="0.01" />
<texture name="texplane" type="2d" builtin="checker" rgb1="0 0 0" rgb2="0.8 0.8 0.8" width="100" height="100" />
<material name='MatPlane' texture="texplane" shininess="1" texrepeat="60 60" specular="1" reflectance="0.5" />
<material name='geom' texture="texgeom" texuniform="true" />
</asset>
<worldbody>
<light directional="true" cutoff="100" exponent="1" diffuse="1 1 1" specular=".1 .1 .1" pos="0 0 1.3" dir="-0 0 -1.3" />
<geom name='floor' pos='0 0 0' size='40 40 40' type='plane' conaffinity='1' rgba='0.8 0.9 0.8 1' condim='3' />
<body name="torso" pos="0 0 0.75">
<geom name="torso_geom" type="sphere" size="0.25" pos="0 0 0" />
<joint name="root" type="free" limited="false" pos="0 0 0" axis="0 0 1" margin="0.01" armature="0" damping="0" />
<body name="front_left_leg" pos="0 0 0">
<geom name="aux_1_geom" type="capsule" size="0.08" fromto="0.0 0.0 0.0 0.2 0.2 0.0" />
<body name="aux_1" pos="0.2 0.2 0">
<joint name="hip_1" type="hinge" pos="0.0 0.0 0.0" axis="0 0 1" range="-30 30" />
<geom name="left_leg_geom" type="capsule" size="0.08" fromto="0.0 0.0 0.0 0.2 0.2 0.0" />
<body pos="0.2 0.2 0">
<joint name="ankle_1" type="hinge" pos="0.0 0.0 0.0" axis="-1 1 0" range="30 70" />
<geom name="left_ankle_geom" type="capsule" size="0.08" fromto="0.0 0.0 0.0 0.4 0.4 0.0" />
</body>
</body>
</body>
<body name="front_right_leg" pos="0 0 0">
<geom name="aux_2_geom" type="capsule" size="0.08" fromto="0.0 0.0 0.0 -0.2 0.2 0.0" />
<body name="aux_2" pos="-0.2 0.2 0">
<joint name="hip_2" type="hinge" pos="0.0 0.0 0.0" axis="0 0 1" range="-30 30" />
<geom name="right_leg_geom" type="capsule" size="0.08" fromto="0.0 0.0 0.0 -0.2 0.2 0.0" />
<body pos="-0.2 0.2 0">
<joint name="ankle_2" type="hinge" pos="0.0 0.0 0.0" axis="1 1 0" range="-70 -30" />
<geom name="right_ankle_geom" type="capsule" size="0.08" fromto="0.0 0.0 0.0 -0.4 0.4 0.0" />
</body>
</body>
</body>
<body name="back_leg" pos="0 0 0">
<geom name="aux_3_geom" type="capsule" size="0.08" fromto="0.0 0.0 0.0 -0.2 -0.2 0.0" />
<body name="aux_3" pos="-0.2 -0.2 0">
<joint name="hip_3" type="hinge" pos="0.0 0.0 0.0" axis="0 0 1" range="-30 30" />
<geom name="back_leg_geom" type="capsule" size="0.08" fromto="0.0 0.0 0.0 -0.2 -0.2 0.0" />
<body pos="-0.2 -0.2 0">
<joint name="ankle_3" type="hinge" pos="0.0 0.0 0.0" axis="-1 1 0" range="-70 -30" />
<geom name="third_ankle_geom" type="capsule" size="0.08" fromto="0.0 0.0 0.0 -0.4 -0.4 0.0" />
</body>
</body>
</body>
<body name="right_back_leg" pos="0 0 0">
<geom name="aux_4_geom" type="capsule" size="0.08" fromto="0.0 0.0 0.0 0.2 -0.2 0.0" />
<body name="aux_4" pos="0.2 -0.2 0">
<joint name="hip_4" type="hinge" pos="0.0 0.0 0.0" axis="0 0 1" range="-30 30" />
<geom name="rightback_leg_geom" type="capsule" size="0.08" fromto="0.0 0.0 0.0 0.2 -0.2 0.0" />
<body pos="0.2 -0.2 0">
<joint name="ankle_4" type="hinge" pos="0.0 0.0 0.0" axis="1 1 0" range="30 70" />
<geom name="fourth_ankle_geom" type="capsule" size="0.08" fromto="0.0 0.0 0.0 0.4 -0.4 0.0" />
</body>
</body>
</body>
</body>
</worldbody>
<actuator>
<motor joint="hip_4" ctrlrange="-30.0 30.0" ctrllimited="true" />
<motor joint="ankle_4" ctrlrange="-30.0 30.0" ctrllimited="true" />
<motor joint="hip_1" ctrlrange="-30.0 30.0" ctrllimited="true" />
<motor joint="ankle_1" ctrlrange="-30.0 30.0" ctrllimited="true" />
<motor joint="hip_2" ctrlrange="-30.0 30.0" ctrllimited="true" />
<motor joint="ankle_2" ctrlrange="-30.0 30.0" ctrllimited="true" />
<motor joint="hip_3" ctrlrange="-30.0 30.0" ctrllimited="true" />
<motor joint="ankle_3" ctrlrange="-30.0 30.0" ctrllimited="true" />
</actuator>
</mujoco>

550
mujoco_maze/maze_env.py Normal file
View File

@ -0,0 +1,550 @@
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Adapted from rllab maze_env.py."""
import os
import tempfile
import xml.etree.ElementTree as ET
import math
import numpy as np
import gym
from environments import maze_env_utils
# Directory that contains mujoco xml files.
MODEL_DIR = "environments/assets"
class MazeEnv(gym.Env):
MODEL_CLASS = None
MAZE_HEIGHT = None
MAZE_SIZE_SCALING = None
def __init__(
self,
maze_id=None,
maze_height=0.5,
maze_size_scaling=8,
n_bins=0,
sensor_range=3.0,
sensor_span=2 * math.pi,
observe_blocks=False,
put_spin_near_agent=False,
top_down_view=False,
manual_collision=False,
*args,
**kwargs,
):
self._maze_id = maze_id
model_cls = self.__class__.MODEL_CLASS
if model_cls is None:
raise "MODEL_CLASS unspecified!"
xml_path = os.path.join(MODEL_DIR, model_cls.FILE)
tree = ET.parse(xml_path)
worldbody = tree.find(".//worldbody")
self.MAZE_HEIGHT = height = maze_height
self.MAZE_SIZE_SCALING = size_scaling = maze_size_scaling
self._n_bins = n_bins
self._sensor_range = sensor_range * size_scaling
self._sensor_span = sensor_span
self._observe_blocks = observe_blocks
self._put_spin_near_agent = put_spin_near_agent
self._top_down_view = top_down_view
self._manual_collision = manual_collision
self.MAZE_STRUCTURE = structure = maze_env_utils.construct_maze(
maze_id=self._maze_id
)
self.elevated = any(
-1 in row for row in structure
) # Elevate the maze to allow for falling.
self.blocks = any(
any(maze_env_utils.can_move(r) for r in row) for row in structure
) # Are there any movable blocks?
torso_x, torso_y = self._find_robot()
self._init_torso_x = torso_x
self._init_torso_y = torso_y
self._init_positions = [
(x - torso_x, y - torso_y) for x, y in self._find_all_robots()
]
self._xy_to_rowcol = lambda x, y: (
2 + (y + size_scaling / 2) / size_scaling,
2 + (x + size_scaling / 2) / size_scaling,
)
self._view = np.zeros(
[5, 5, 3]
) # walls (immovable), chasms (fall), movable blocks
height_offset = 0.0
if self.elevated:
# Increase initial z-pos of ant.
height_offset = height * size_scaling
torso = tree.find(".//body[@name='torso']")
torso.set("pos", "0 0 %.2f" % (0.75 + height_offset))
if self.blocks:
# If there are movable blocks, change simulation settings to perform
# better contact detection.
default = tree.find(".//default")
default.find(".//geom").set("solimp", ".995 .995 .01")
self.movable_blocks = []
for i in range(len(structure)):
for j in range(len(structure[0])):
struct = structure[i][j]
if struct == "r" and self._put_spin_near_agent:
struct = maze_env_utils.Move.SpinXY
if self.elevated and struct not in [-1]:
# Create elevated platform.
ET.SubElement(
worldbody,
"geom",
name="elevated_%d_%d" % (i, j),
pos="%f %f %f"
% (
j * size_scaling - torso_x,
i * size_scaling - torso_y,
height / 2 * size_scaling,
),
size="%f %f %f"
% (
0.5 * size_scaling,
0.5 * size_scaling,
height / 2 * size_scaling,
),
type="box",
material="",
contype="1",
conaffinity="1",
rgba="0.9 0.9 0.9 1",
)
if struct == 1: # Unmovable block.
# Offset all coordinates so that robot starts at the origin.
ET.SubElement(
worldbody,
"geom",
name="block_%d_%d" % (i, j),
pos="%f %f %f"
% (
j * size_scaling - torso_x,
i * size_scaling - torso_y,
height_offset + height / 2 * size_scaling,
),
size="%f %f %f"
% (
0.5 * size_scaling,
0.5 * size_scaling,
height / 2 * size_scaling,
),
type="box",
material="",
contype="1",
conaffinity="1",
rgba="0.4 0.4 0.4 1",
)
elif maze_env_utils.can_move(struct): # Movable block.
# The "falling" blocks are shrunk slightly and increased in mass to
# ensure that it can fall easily through a gap in the platform blocks.
name = "movable_%d_%d" % (i, j)
self.movable_blocks.append((name, struct))
falling = maze_env_utils.can_move_z(struct)
spinning = maze_env_utils.can_spin(struct)
x_offset = 0.25 * size_scaling if spinning else 0.0
y_offset = 0.0
shrink = 0.1 if spinning else 0.99 if falling else 1.0
height_shrink = 0.1 if spinning else 1.0
movable_body = ET.SubElement(
worldbody,
"body",
name=name,
pos="%f %f %f"
% (
j * size_scaling - torso_x + x_offset,
i * size_scaling - torso_y + y_offset,
height_offset + height / 2 * size_scaling * height_shrink,
),
)
ET.SubElement(
movable_body,
"geom",
name="block_%d_%d" % (i, j),
pos="0 0 0",
size="%f %f %f"
% (
0.5 * size_scaling * shrink,
0.5 * size_scaling * shrink,
height / 2 * size_scaling * height_shrink,
),
type="box",
material="",
mass="0.001" if falling else "0.0002",
contype="1",
conaffinity="1",
rgba="0.9 0.1 0.1 1",
)
if maze_env_utils.can_move_x(struct):
ET.SubElement(
movable_body,
"joint",
armature="0",
axis="1 0 0",
damping="0.0",
limited="true" if falling else "false",
range="%f %f" % (-size_scaling, size_scaling),
margin="0.01",
name="movable_x_%d_%d" % (i, j),
pos="0 0 0",
type="slide",
)
if maze_env_utils.can_move_y(struct):
ET.SubElement(
movable_body,
"joint",
armature="0",
axis="0 1 0",
damping="0.0",
limited="true" if falling else "false",
range="%f %f" % (-size_scaling, size_scaling),
margin="0.01",
name="movable_y_%d_%d" % (i, j),
pos="0 0 0",
type="slide",
)
if maze_env_utils.can_move_z(struct):
ET.SubElement(
movable_body,
"joint",
armature="0",
axis="0 0 1",
damping="0.0",
limited="true",
range="%f 0" % (-height_offset),
margin="0.01",
name="movable_z_%d_%d" % (i, j),
pos="0 0 0",
type="slide",
)
if maze_env_utils.can_spin(struct):
ET.SubElement(
movable_body,
"joint",
armature="0",
axis="0 0 1",
damping="0.0",
limited="false",
name="spinable_%d_%d" % (i, j),
pos="0 0 0",
type="ball",
)
torso = tree.find(".//body[@name='torso']")
geoms = torso.findall(".//geom")
for geom in geoms:
if "name" not in geom.attrib:
raise Exception("Every geom of the torso must have a name " "defined")
_, file_path = tempfile.mkstemp(text=True, suffix=".xml")
tree.write(file_path)
self.wrapped_env = model_cls(*args, file_path=file_path, **kwargs)
def get_ori(self):
return self.wrapped_env.get_ori()
def get_top_down_view(self):
self._view = np.zeros_like(self._view)
def valid(row, col):
return self._view.shape[0] > row >= 0 and self._view.shape[1] > col >= 0
def update_view(x, y, d, row=None, col=None):
if row is None or col is None:
x = x - self._robot_x
y = y - self._robot_y
th = self._robot_ori
row, col = self._xy_to_rowcol(x, y)
update_view(x, y, d, row=row, col=col)
return
row, row_frac, col, col_frac = int(row), row % 1, int(col), col % 1
if row_frac < 0:
row_frac += 1
if col_frac < 0:
col_frac += 1
if valid(row, col):
self._view[row, col, d] += (
min(1.0, row_frac + 0.5) - max(0.0, row_frac - 0.5)
) * (min(1.0, col_frac + 0.5) - max(0.0, col_frac - 0.5))
if valid(row - 1, col):
self._view[row - 1, col, d] += (max(0.0, 0.5 - row_frac)) * (
min(1.0, col_frac + 0.5) - max(0.0, col_frac - 0.5)
)
if valid(row + 1, col):
self._view[row + 1, col, d] += (max(0.0, row_frac - 0.5)) * (
min(1.0, col_frac + 0.5) - max(0.0, col_frac - 0.5)
)
if valid(row, col - 1):
self._view[row, col - 1, d] += (
min(1.0, row_frac + 0.5) - max(0.0, row_frac - 0.5)
) * (max(0.0, 0.5 - col_frac))
if valid(row, col + 1):
self._view[row, col + 1, d] += (
min(1.0, row_frac + 0.5) - max(0.0, row_frac - 0.5)
) * (max(0.0, col_frac - 0.5))
if valid(row - 1, col - 1):
self._view[row - 1, col - 1, d] += (max(0.0, 0.5 - row_frac)) * max(
0.0, 0.5 - col_frac
)
if valid(row - 1, col + 1):
self._view[row - 1, col + 1, d] += (max(0.0, 0.5 - row_frac)) * max(
0.0, col_frac - 0.5
)
if valid(row + 1, col + 1):
self._view[row + 1, col + 1, d] += (max(0.0, row_frac - 0.5)) * max(
0.0, col_frac - 0.5
)
if valid(row + 1, col - 1):
self._view[row + 1, col - 1, d] += (max(0.0, row_frac - 0.5)) * max(
0.0, 0.5 - col_frac
)
# Draw ant.
robot_x, robot_y = self.wrapped_env.get_body_com("torso")[:2]
self._robot_x = robot_x
self._robot_y = robot_y
self._robot_ori = self.get_ori()
structure = self.MAZE_STRUCTURE
size_scaling = self.MAZE_SIZE_SCALING
height = self.MAZE_HEIGHT
# Draw immovable blocks and chasms.
for i in range(len(structure)):
for j in range(len(structure[0])):
if structure[i][j] == 1: # Wall.
update_view(
j * size_scaling - self._init_torso_x,
i * size_scaling - self._init_torso_y,
0,
)
if structure[i][j] == -1: # Chasm.
update_view(
j * size_scaling - self._init_torso_x,
i * size_scaling - self._init_torso_y,
1,
)
# Draw movable blocks.
for block_name, block_type in self.movable_blocks:
block_x, block_y = self.wrapped_env.get_body_com(block_name)[:2]
update_view(block_x, block_y, 2)
return self._view
def get_range_sensor_obs(self):
"""Returns egocentric range sensor observations of maze."""
robot_x, robot_y, robot_z = self.wrapped_env.get_body_com("torso")[:3]
ori = self.get_ori()
structure = self.MAZE_STRUCTURE
size_scaling = self.MAZE_SIZE_SCALING
height = self.MAZE_HEIGHT
segments = []
# Get line segments (corresponding to outer boundary) of each immovable
# block or drop-off.
for i in range(len(structure)):
for j in range(len(structure[0])):
if structure[i][j] in [1, -1]: # There's a wall or drop-off.
cx = j * size_scaling - self._init_torso_x
cy = i * size_scaling - self._init_torso_y
x1 = cx - 0.5 * size_scaling
x2 = cx + 0.5 * size_scaling
y1 = cy - 0.5 * size_scaling
y2 = cy + 0.5 * size_scaling
struct_segments = [
((x1, y1), (x2, y1)),
((x2, y1), (x2, y2)),
((x2, y2), (x1, y2)),
((x1, y2), (x1, y1)),
]
for seg in struct_segments:
segments.append(dict(segment=seg, type=structure[i][j],))
# Get line segments (corresponding to outer boundary) of each movable
# block within the agent's z-view.
for block_name, block_type in self.movable_blocks:
block_x, block_y, block_z = self.wrapped_env.get_body_com(block_name)[:3]
if (
block_z + height * size_scaling / 2 >= robot_z
and robot_z >= block_z - height * size_scaling / 2
): # Block in view.
x1 = block_x - 0.5 * size_scaling
x2 = block_x + 0.5 * size_scaling
y1 = block_y - 0.5 * size_scaling
y2 = block_y + 0.5 * size_scaling
struct_segments = [
((x1, y1), (x2, y1)),
((x2, y1), (x2, y2)),
((x2, y2), (x1, y2)),
((x1, y2), (x1, y1)),
]
for seg in struct_segments:
segments.append(dict(segment=seg, type=block_type,))
sensor_readings = np.zeros((self._n_bins, 3)) # 3 for wall, drop-off, block
for ray_idx in range(self._n_bins):
ray_ori = (
ori
- self._sensor_span * 0.5
+ (2 * ray_idx + 1.0) / (2 * self._n_bins) * self._sensor_span
)
ray_segments = []
# Get all segments that intersect with ray.
for seg in segments:
p = maze_env_utils.ray_segment_intersect(
ray=((robot_x, robot_y), ray_ori), segment=seg["segment"]
)
if p is not None:
ray_segments.append(
dict(
segment=seg["segment"],
type=seg["type"],
ray_ori=ray_ori,
distance=maze_env_utils.point_distance(
p, (robot_x, robot_y)
),
)
)
if len(ray_segments) > 0:
# Find out which segment is intersected first.
first_seg = sorted(ray_segments, key=lambda x: x["distance"])[0]
seg_type = first_seg["type"]
idx = (
0
if seg_type == 1
else 1 # Wall.
if seg_type == -1
else 2 # Drop-off.
if maze_env_utils.can_move(seg_type)
else None # Block.
)
if first_seg["distance"] <= self._sensor_range:
sensor_readings[ray_idx][idx] = (
self._sensor_range - first_seg["distance"]
) / self._sensor_range
return sensor_readings
def _get_obs(self):
wrapped_obs = self.wrapped_env._get_obs()
if self._top_down_view:
view = [self.get_top_down_view().flat]
else:
view = []
if self._observe_blocks:
additional_obs = []
for block_name, block_type in self.movable_blocks:
additional_obs.append(self.wrapped_env.get_body_com(block_name))
wrapped_obs = np.concatenate(
[wrapped_obs[:3]] + additional_obs + [wrapped_obs[3:]]
)
range_sensor_obs = self.get_range_sensor_obs()
return np.concatenate(
[wrapped_obs, range_sensor_obs.flat] + view + [[self.t * 0.001]]
)
def reset(self):
self.t = 0
self.trajectory = []
self.wrapped_env.reset()
if len(self._init_positions) > 1:
xy = random.choice(self._init_positions)
self.wrapped_env.set_xy(xy)
return self._get_obs()
@property
def viewer(self):
return self.wrapped_env.viewer
def render(self, *args, **kwargs):
return self.wrapped_env.render(*args, **kwargs)
@property
def observation_space(self):
shape = self._get_obs().shape
high = np.inf * np.ones(shape)
low = -high
return gym.spaces.Box(low, high)
@property
def action_space(self):
return self.wrapped_env.action_space
def _find_robot(self):
structure = self.MAZE_STRUCTURE
size_scaling = self.MAZE_SIZE_SCALING
for i in range(len(structure)):
for j in range(len(structure[0])):
if structure[i][j] == "r":
return j * size_scaling, i * size_scaling
assert False, "No robot in maze specification."
def _find_all_robots(self):
structure = self.MAZE_STRUCTURE
size_scaling = self.MAZE_SIZE_SCALING
coords = []
for i in range(len(structure)):
for j in range(len(structure[0])):
if structure[i][j] == "r":
coords.append((j * size_scaling, i * size_scaling))
return coords
def _is_in_collision(self, pos):
x, y = pos
structure = self.MAZE_STRUCTURE
size_scaling = self.MAZE_SIZE_SCALING
for i in range(len(structure)):
for j in range(len(structure[0])):
if structure[i][j] == 1:
minx = j * size_scaling - size_scaling * 0.5 - self._init_torso_x
maxx = j * size_scaling + size_scaling * 0.5 - self._init_torso_x
miny = i * size_scaling - size_scaling * 0.5 - self._init_torso_y
maxy = i * size_scaling + size_scaling * 0.5 - self._init_torso_y
if minx <= x <= maxx and miny <= y <= maxy:
return True
return False
def step(self, action):
self.t += 1
if self._manual_collision:
old_pos = self.wrapped_env.get_xy()
inner_next_obs, inner_reward, done, info = self.wrapped_env.step(action)
new_pos = self.wrapped_env.get_xy()
if self._is_in_collision(new_pos):
self.wrapped_env.set_xy(old_pos)
else:
inner_next_obs, inner_reward, done, info = self.wrapped_env.step(action)
next_obs = self._get_obs()
done = False
return next_obs, inner_reward, done, info

View File

@ -0,0 +1,162 @@
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Adapted from rllab maze_env_utils.py."""
import math
class Move(object):
X = 11
Y = 12
Z = 13
XY = 14
XZ = 15
YZ = 16
XYZ = 17
SpinXY = 18
def can_move_x(movable):
return movable in [Move.X, Move.XY, Move.XZ, Move.XYZ, Move.SpinXY]
def can_move_y(movable):
return movable in [Move.Y, Move.XY, Move.YZ, Move.XYZ, Move.SpinXY]
def can_move_z(movable):
return movable in [Move.Z, Move.XZ, Move.YZ, Move.XYZ]
def can_spin(movable):
return movable in [Move.SpinXY]
def can_move(movable):
return can_move_x(movable) or can_move_y(movable) or can_move_z(movable)
def construct_maze(maze_id="Maze"):
if maze_id == "Maze":
structure = [
[1, 1, 1, 1, 1],
[1, "r", 0, 0, 1],
[1, 1, 1, 0, 1],
[1, 0, 0, 0, 1],
[1, 1, 1, 1, 1],
]
elif maze_id == "Push":
structure = [
[1, 1, 1, 1, 1],
[1, 0, "r", 1, 1],
[1, 0, Move.XY, 0, 1],
[1, 1, 0, 1, 1],
[1, 1, 1, 1, 1],
]
elif maze_id == "Fall":
structure = [
[1, 1, 1, 1],
[1, "r", 0, 1],
[1, 0, Move.YZ, 1],
[1, -1, -1, 1],
[1, 0, 0, 1],
[1, 1, 1, 1],
]
elif maze_id == "Block":
O = "r"
structure = [
[1, 1, 1, 1, 1],
[1, O, 0, 0, 1],
[1, 0, 0, 0, 1],
[1, 0, 0, 0, 1],
[1, 1, 1, 1, 1],
]
elif maze_id == "BlockMaze":
O = "r"
structure = [
[1, 1, 1, 1],
[1, O, 0, 1],
[1, 1, 0, 1],
[1, 0, 0, 1],
[1, 1, 1, 1],
]
else:
raise NotImplementedError("The provided MazeId %s is not recognized" % maze_id)
return structure
def line_intersect(pt1, pt2, ptA, ptB):
"""
Taken from https://www.cs.hmc.edu/ACM/lectures/intersections.html
this returns the intersection of Line(pt1,pt2) and Line(ptA,ptB)
"""
DET_TOLERANCE = 0.00000001
# the first line is pt1 + r*(pt2-pt1)
# in component form:
x1, y1 = pt1
x2, y2 = pt2
dx1 = x2 - x1
dy1 = y2 - y1
# the second line is ptA + s*(ptB-ptA)
x, y = ptA
xB, yB = ptB
dx = xB - x
dy = yB - y
DET = -dx1 * dy + dy1 * dx
if math.fabs(DET) < DET_TOLERANCE:
return (0, 0, 0, 0, 0)
# now, the determinant should be OK
DETinv = 1.0 / DET
# find the scalar amount along the "self" segment
r = DETinv * (-dy * (x - x1) + dx * (y - y1))
# find the scalar amount along the input line
s = DETinv * (-dy1 * (x - x1) + dx1 * (y - y1))
# return the average of the two descriptions
xi = (x1 + r * dx1 + x + s * dx) / 2.0
yi = (y1 + r * dy1 + y + s * dy) / 2.0
return (xi, yi, 1, r, s)
def ray_segment_intersect(ray, segment):
"""
Check if the ray originated from (x, y) with direction theta intersects the line segment (x1, y1) -- (x2, y2),
and return the intersection point if there is one
"""
(x, y), theta = ray
# (x1, y1), (x2, y2) = segment
pt1 = (x, y)
len = 1
pt2 = (x + len * math.cos(theta), y + len * math.sin(theta))
xo, yo, valid, r, s = line_intersect(pt1, pt2, *segment)
if valid and r >= 0 and 0 <= s <= 1:
return (xo, yo)
return None
def point_distance(p1, p2):
x1, y1 = p1
x2, y2 = p2
return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5

101
mujoco_maze/point.py Normal file
View File

@ -0,0 +1,101 @@
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Wrapper for creating the ant environment in gym_mujoco."""
import math
import numpy as np
import mujoco_py
from gym import utils
from gym.envs.mujoco import mujoco_env
class PointEnv(mujoco_env.MujocoEnv, utils.EzPickle):
FILE = "point.xml"
ORI_IND = 2
def __init__(self, file_path=None, expose_all_qpos=True):
self._expose_all_qpos = expose_all_qpos
mujoco_env.MujocoEnv.__init__(self, file_path, 1)
utils.EzPickle.__init__(self)
@property
def physics(self):
# check mujoco version is greater than version 1.50 to call correct physics
# model containing PyMjData object for getting and setting position/velocity
# check https://github.com/openai/mujoco-py/issues/80 for updates to api
if mujoco_py.get_version() >= "1.50":
return self.sim
else:
return self.model
def _step(self, a):
return self.step(a)
def step(self, action):
action[0] = 0.2 * action[0]
qpos = np.copy(self.physics.data.qpos)
qpos[2] += action[1]
ori = qpos[2]
# compute increment in each direction
dx = math.cos(ori) * action[0]
dy = math.sin(ori) * action[0]
# ensure that the robot is within reasonable range
qpos[0] = np.clip(qpos[0] + dx, -100, 100)
qpos[1] = np.clip(qpos[1] + dy, -100, 100)
qvel = self.physics.data.qvel
self.set_state(qpos, qvel)
for _ in range(0, self.frame_skip):
self.physics.step()
next_obs = self._get_obs()
reward = 0
done = False
info = {}
return next_obs, reward, done, info
def _get_obs(self):
if self._expose_all_qpos:
return np.concatenate(
[
self.physics.data.qpos.flat[:3], # Only point-relevant coords.
self.physics.data.qvel.flat[:3],
]
)
return np.concatenate(
[self.physics.data.qpos.flat[2:3], self.physics.data.qvel.flat[:3]]
)
def reset_model(self):
qpos = self.init_qpos + self.np_random.uniform(
size=self.physics.model.nq, low=-0.1, high=0.1
)
qvel = self.init_qvel + self.np_random.randn(self.physics.model.nv) * 0.1
# Set everything other than point to original position and 0 velocity.
qpos[3:] = self.init_qpos[3:]
qvel[3:] = 0.0
self.set_state(qpos, qvel)
return self._get_obs()
def get_ori(self):
return self.physics.data.qpos[self.__class__.ORI_IND]
def set_xy(self, xy):
qpos = np.copy(self.physics.data.qpos)
qpos[0] = xy[0]
qpos[1] = xy[1]
qvel = self.physics.data.qvel

View File

@ -0,0 +1,21 @@
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from environments.maze_env import MazeEnv
from environments.point import PointEnv
class PointMazeEnv(MazeEnv):
MODEL_CLASS = PointEnv

18
pyproject.toml Normal file
View File

@ -0,0 +1,18 @@
[tool.black]
line-length = 88
target-version = ['py36']
include = '\.pyi?$'
exclude = '''
(
/(
\.eggs
| \.git
| \.mypy_cache
| _build
| buck-out
| build
| dist
)/
)
'''

18
setup.cfg Normal file
View File

@ -0,0 +1,18 @@
[flake8]
max-line-length = 88
ignore = W391, W503, F821, E203, E231
[mypy]
python_version = 3.6
ignore_missing_imports = True
warn_unused_configs = True
[isort]
multi_line_output=3
include_trailing_comma=True
force_grid_wrap=0
use_parentheses=True
line_length=88
lines_between_types=0
combine_as_imports=True
known_first_party=rainy, tests