Block Maze
This commit is contained in:
parent
1c4152654b
commit
720f535682
@ -32,6 +32,10 @@ Thankfully, this project is based on the code from [rllab] and [tensorflow/mode
|
||||
- PointFall-v0/AntFall-v0 (Distance-based Reward)
|
||||
- PointFall-v1/AntFall-v1 (Goal-based Reward)
|
||||
|
||||
## Caveats
|
||||
This project has some other features (e.g., block maze and other
|
||||
robots) but they are work in progress.
|
||||
|
||||
## License
|
||||
This project is licensed under Apache License, Version 2.0
|
||||
([LICENSE-APACHE](LICENSE) or http://www.apache.org/licenses/LICENSE-2.0).
|
||||
|
@ -11,6 +11,7 @@ import gym
|
||||
from mujoco_maze.ant import AntEnv
|
||||
from mujoco_maze.maze_task import TaskRegistry
|
||||
from mujoco_maze.point import PointEnv
|
||||
from mujoco_maze.reacher import ReacherEnv
|
||||
from mujoco_maze.swimmer import SwimmerEnv
|
||||
|
||||
for maze_id in TaskRegistry.keys():
|
||||
@ -41,10 +42,28 @@ for maze_id in TaskRegistry.keys():
|
||||
max_episode_steps=1000,
|
||||
reward_threshold=task_cls.REWARD_THRESHOLD,
|
||||
)
|
||||
skip_swimmer = False
|
||||
for inhibited in ["Fall", "Push", "Block"]:
|
||||
if inhibited in maze_id:
|
||||
skip_swimmer = True
|
||||
|
||||
if "Push" in maze_id or "Fall" in maze_id:
|
||||
if skip_swimmer:
|
||||
continue
|
||||
|
||||
# Reacher
|
||||
gym.envs.register(
|
||||
id=f"Reacher{maze_id}-v{i}",
|
||||
entry_point="mujoco_maze.maze_env:MazeEnv",
|
||||
kwargs=dict(
|
||||
model_cls=ReacherEnv,
|
||||
maze_task=task_cls,
|
||||
maze_size_scaling=task_cls.MAZE_SIZE_SCALING.swimmer,
|
||||
inner_reward_scaling=task_cls.INNER_REWARD_SCALING,
|
||||
),
|
||||
max_episode_steps=1000,
|
||||
reward_threshold=task_cls.REWARD_THRESHOLD,
|
||||
)
|
||||
|
||||
# Swimmer
|
||||
gym.envs.register(
|
||||
id=f"Swimmer{maze_id}-v{i}",
|
||||
|
@ -13,7 +13,7 @@
|
||||
<material name='geom' texture="texgeom" texuniform="true" />
|
||||
</asset>
|
||||
<worldbody>
|
||||
<light cutoff="100" diffuse="1 1 1" dir="-0 0 -1.3" directional="true" exponent="1" pos="0 0 1.3" specular=".1 .1 .1" />
|
||||
<light cutoff="100" diffuse="1 1 1" dir="-0 0 -1.3" directional="true" exponent="1" pos="0 0s 1.3" specular=".1 .1 .1" />
|
||||
<geom conaffinity="1" condim="3" material="MatPlane" name="floor" pos="0 0 -0.1" rgba="0.8 0.9 0.8 1" size="40 40 0.1" type="plane" />
|
||||
<!-- ================= SWIMMER ================= /-->
|
||||
<body name="torso" pos="0 0 0">
|
||||
|
@ -145,11 +145,8 @@ class MazeEnv(gym.Env):
|
||||
spinning = struct.can_spin()
|
||||
shrink = 0.1 if spinning else 0.99 if falling else 1.0
|
||||
height_shrink = 0.1 if spinning else 1.0
|
||||
x = (
|
||||
j * size_scaling - torso_x + 0.25 * size_scaling
|
||||
if spinning
|
||||
else 0.0
|
||||
)
|
||||
x_offset = 0.25 * size_scaling if spinning else 0.0
|
||||
x = j * size_scaling - torso_x + x_offset
|
||||
y = i * size_scaling - torso_y
|
||||
h = height / 2 * size_scaling * height_shrink
|
||||
size = 0.5 * size_scaling * shrink
|
||||
@ -462,5 +459,5 @@ class MazeEnv(gym.Env):
|
||||
info["position"] = self.wrapped_env.get_xy()
|
||||
return next_obs, inner_reward + outer_reward, done, info
|
||||
|
||||
def close(self):
|
||||
def close(self) -> None:
|
||||
self.wrapped_env.close()
|
||||
|
@ -2,7 +2,7 @@
|
||||
"""
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict, List, NamedTuple, Tuple, Type
|
||||
from typing import Dict, List, NamedTuple, Optional, Tuple, Type
|
||||
|
||||
import numpy as np
|
||||
|
||||
@ -51,6 +51,7 @@ class Scaling(NamedTuple):
|
||||
|
||||
class MazeTask(ABC):
|
||||
REWARD_THRESHOLD: float
|
||||
PENALTY: Optional[float] = None
|
||||
MAZE_SIZE_SCALING: Scaling = Scaling(8.0, 4.0, 4.0)
|
||||
INNER_REWARD_SCALING: float = 0.01
|
||||
TOP_DOWN_VIEW: bool = False
|
||||
@ -89,41 +90,16 @@ class DistRewardMixIn:
|
||||
return -self.goals[0].euc_dist(obs) / self.scale
|
||||
|
||||
|
||||
class GoalRewardSimpleRoom(MazeTask):
|
||||
""" Very easy task. For testing.
|
||||
"""
|
||||
REWARD_THRESHOLD: float = 0.9
|
||||
|
||||
def __init__(self, scale: float) -> None:
|
||||
super().__init__(scale)
|
||||
self.goals = [MazeGoal(np.array([2.0 * scale, 0.0]))]
|
||||
|
||||
def reward(self, obs: np.ndarray) -> float:
|
||||
return 1.0 if self.termination(obs) else -0.0001
|
||||
|
||||
@staticmethod
|
||||
def create_maze() -> List[List[MazeCell]]:
|
||||
E, B, R = MazeCell.EMPTY, MazeCell.BLOCK, MazeCell.ROBOT
|
||||
return [
|
||||
[B, B, B, B, B],
|
||||
[B, R, E, E, B],
|
||||
[B, B, B, B, B],
|
||||
]
|
||||
|
||||
|
||||
class DistRewardSimpleRoom(GoalRewardSimpleRoom, DistRewardMixIn):
|
||||
pass
|
||||
|
||||
|
||||
class GoalRewardUMaze(MazeTask):
|
||||
REWARD_THRESHOLD: float = 0.9
|
||||
PENALTY: float = -0.0001
|
||||
|
||||
def __init__(self, scale: float) -> None:
|
||||
super().__init__(scale)
|
||||
self.goals = [MazeGoal(np.array([0.0, 2.0 * scale]))]
|
||||
|
||||
def reward(self, obs: np.ndarray) -> float:
|
||||
return 1.0 if self.termination(obs) else -0.0001
|
||||
return 1.0 if self.termination(obs) else self.PENALTY
|
||||
|
||||
@staticmethod
|
||||
def create_maze() -> List[List[MazeCell]]:
|
||||
@ -141,6 +117,25 @@ class DistRewardUMaze(GoalRewardUMaze, DistRewardMixIn):
|
||||
pass
|
||||
|
||||
|
||||
class GoalRewardSimpleRoom(GoalRewardUMaze):
|
||||
def __init__(self, scale: float) -> None:
|
||||
super().__init__(scale)
|
||||
self.goals = [MazeGoal(np.array([2.0 * scale, 0.0]))]
|
||||
|
||||
@staticmethod
|
||||
def create_maze() -> List[List[MazeCell]]:
|
||||
E, B, R = MazeCell.EMPTY, MazeCell.BLOCK, MazeCell.ROBOT
|
||||
return [
|
||||
[B, B, B, B, B],
|
||||
[B, R, E, E, B],
|
||||
[B, B, B, B, B],
|
||||
]
|
||||
|
||||
|
||||
class DistRewardSimpleRoom(GoalRewardSimpleRoom, DistRewardMixIn):
|
||||
pass
|
||||
|
||||
|
||||
class GoalRewardPush(GoalRewardUMaze):
|
||||
TOP_DOWN_VIEW = True
|
||||
|
||||
@ -188,8 +183,29 @@ class DistRewardFall(GoalRewardFall, DistRewardMixIn):
|
||||
pass
|
||||
|
||||
|
||||
class GoalRewardFall(GoalRewardUMaze):
|
||||
TOP_DOWN_VIEW = True
|
||||
|
||||
def __init__(self, scale: float) -> None:
|
||||
super().__init__(scale)
|
||||
self.goals = [MazeGoal(np.array([0.0, 3.375 * scale, 4.5]))]
|
||||
|
||||
@staticmethod
|
||||
def create_maze() -> List[List[MazeCell]]:
|
||||
E, B, C, R = MazeCell.EMPTY, MazeCell.BLOCK, MazeCell.CHASM, MazeCell.ROBOT
|
||||
return [
|
||||
[B, B, B, B],
|
||||
[B, R, E, B],
|
||||
[B, E, MazeCell.YZ, B],
|
||||
[B, C, C, B],
|
||||
[B, E, E, B],
|
||||
[B, B, B, B],
|
||||
]
|
||||
|
||||
|
||||
class GoalReward2Rooms(MazeTask):
|
||||
REWARD_THRESHOLD: float = 0.9
|
||||
PENALTY: float = -0.0001
|
||||
MAZE_SIZE_SCALING: Scaling = Scaling(4.0, 4.0, 4.0)
|
||||
|
||||
def __init__(self, scale: float) -> None:
|
||||
@ -200,7 +216,7 @@ class GoalReward2Rooms(MazeTask):
|
||||
for goal in self.goals:
|
||||
if goal.neighbor(obs):
|
||||
return goal.reward_scale
|
||||
return -0.0001
|
||||
return self.PENALTY
|
||||
|
||||
@staticmethod
|
||||
def create_maze() -> List[List[MazeCell]]:
|
||||
@ -228,6 +244,7 @@ class SubGoal2Rooms(GoalReward2Rooms):
|
||||
|
||||
class GoalReward4Rooms(MazeTask):
|
||||
REWARD_THRESHOLD: float = 0.9
|
||||
PENALTY: float = -0.0001
|
||||
MAZE_SIZE_SCALING: Scaling = Scaling(4.0, 4.0, 4.0)
|
||||
|
||||
def __init__(self, scale: float) -> None:
|
||||
@ -238,7 +255,7 @@ class GoalReward4Rooms(MazeTask):
|
||||
for goal in self.goals:
|
||||
if goal.neighbor(obs):
|
||||
return goal.reward_scale
|
||||
return -0.0001
|
||||
return self.PENALTY
|
||||
|
||||
@staticmethod
|
||||
def create_maze() -> List[List[MazeCell]]:
|
||||
@ -271,6 +288,7 @@ class SubGoal4Rooms(GoalReward4Rooms):
|
||||
|
||||
class GoalRewardTRoom(MazeTask):
|
||||
REWARD_THRESHOLD: float = 0.9
|
||||
PENALTY: float = -0.0001
|
||||
MAZE_SIZE_SCALING: Scaling = Scaling(4.0, 4.0, 4.0)
|
||||
|
||||
def __init__(
|
||||
@ -285,7 +303,7 @@ class GoalRewardTRoom(MazeTask):
|
||||
for goal in self.goals:
|
||||
if goal.neighbor(obs):
|
||||
return goal.reward_scale
|
||||
return -0.0001
|
||||
return self.PENALTY
|
||||
|
||||
@staticmethod
|
||||
def create_maze() -> List[List[MazeCell]]:
|
||||
@ -304,6 +322,30 @@ class DistRewardTRoom(GoalRewardTRoom, DistRewardMixIn):
|
||||
pass
|
||||
|
||||
|
||||
class GoalRewardBlockMaze(GoalRewardUMaze):
|
||||
OBSERVE_BLOCKS: bool = True
|
||||
|
||||
def __init__(self, scale: float) -> None:
|
||||
super().__init__(scale)
|
||||
self.goals = [MazeGoal(np.array([0.0, 3.0 * scale]))]
|
||||
|
||||
@staticmethod
|
||||
def create_maze() -> List[List[MazeCell]]:
|
||||
E, B, R, M = MazeCell.EMPTY, MazeCell.BLOCK, MazeCell.ROBOT, MazeCell.XY
|
||||
return [
|
||||
[B, B, B, B, B],
|
||||
[B, R, E, E, B],
|
||||
[B, B, B, M, B],
|
||||
[B, E, E, E, B],
|
||||
[B, E, E, E, B],
|
||||
[B, B, B, B, B],
|
||||
]
|
||||
|
||||
|
||||
class DistRewardBlockMaze(GoalRewardBlockMaze, DistRewardMixIn):
|
||||
pass
|
||||
|
||||
|
||||
class TaskRegistry:
|
||||
REGISTRY: Dict[str, List[Type[MazeTask]]] = {
|
||||
"SimpleRoom": [DistRewardSimpleRoom, GoalRewardSimpleRoom],
|
||||
@ -313,6 +355,7 @@ class TaskRegistry:
|
||||
"2Rooms": [DistReward2Rooms, GoalReward2Rooms, SubGoal2Rooms],
|
||||
"4Rooms": [DistReward4Rooms, GoalReward4Rooms, SubGoal4Rooms],
|
||||
"TRoom": [DistRewardTRoom, GoalRewardTRoom],
|
||||
"BlockMaze": [DistRewardBlockMaze, GoalRewardBlockMaze],
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
|
@ -10,7 +10,7 @@ def test_ant_maze(maze_id):
|
||||
env = gym.make(f"Ant{maze_id}-v{i}")
|
||||
s0 = env.reset()
|
||||
s, _, _, _ = env.step(env.action_space.sample())
|
||||
if not env.unwrapped._top_down_view:
|
||||
if not env.unwrapped._top_down_view and not env.unwrapped._observe_blocks:
|
||||
assert s0.shape == (30,)
|
||||
assert s.shape == (30,)
|
||||
|
||||
@ -20,21 +20,41 @@ def test_point_maze(maze_id):
|
||||
for i in range(2):
|
||||
env = gym.make(f"Point{maze_id}-v{i}")
|
||||
s0 = env.reset()
|
||||
s, _, _, _ = env.step(env.action_space.sample())
|
||||
if not env.unwrapped._top_down_view:
|
||||
s, r, _, _ = env.step(env.action_space.sample())
|
||||
if not env.unwrapped._top_down_view and not env.unwrapped._observe_blocks:
|
||||
assert s0.shape == (7,)
|
||||
assert s.shape == (7,)
|
||||
if i == 0:
|
||||
assert r != 0.0
|
||||
else:
|
||||
assert r == env.unwrapped._task.PENALTY
|
||||
assert r < 0.0
|
||||
|
||||
|
||||
@pytest.mark.parametrize("maze_id", mujoco_maze.TaskRegistry.keys())
|
||||
def test_reacher_maze(maze_id):
|
||||
for inhibited in ["Fall", "Push", "Block"]:
|
||||
if inhibited in maze_id:
|
||||
return
|
||||
for i in range(2):
|
||||
env = gym.make(f"Reacher{maze_id}-v{i}")
|
||||
s0 = env.reset()
|
||||
s, _, _, _ = env.step(env.action_space.sample())
|
||||
if not env.unwrapped._top_down_view and not env.unwrapped._observe_blocks:
|
||||
assert s0.shape == (9,)
|
||||
assert s.shape == (9,)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("maze_id", mujoco_maze.TaskRegistry.keys())
|
||||
def test_swimmer_maze(maze_id):
|
||||
if "Fall" in maze_id or "Push" in maze_id:
|
||||
return
|
||||
for inhibited in ["Fall", "Push", "Block"]:
|
||||
if inhibited in maze_id:
|
||||
return
|
||||
for i in range(2):
|
||||
env = gym.make(f"Swimmer{maze_id}-v{i}")
|
||||
s0 = env.reset()
|
||||
s, _, _, _ = env.step(env.action_space.sample())
|
||||
if not env.unwrapped._top_down_view:
|
||||
if not env.unwrapped._top_down_view and not env.unwrapped._observe_blocks:
|
||||
assert s0.shape == (11,)
|
||||
assert s.shape == (11,)
|
||||
|
||||
@ -45,3 +65,10 @@ def test_maze_args(v):
|
||||
assert env.reset().shape == (7,)
|
||||
s, _, _, _ = env.step(env.action_space.sample())
|
||||
assert s.shape == (7,)
|
||||
|
||||
|
||||
def test_getting_movable(v):
|
||||
env = gym.make("PointBlockMaze-v1")
|
||||
assert env.reset().shape == (7,)
|
||||
s, _, _, _ = env.step(env.action_space.sample())
|
||||
assert s.shape == (7,)
|
||||
|
Loading…
Reference in New Issue
Block a user