Implement 4Rooms

This commit is contained in:
kngwyu 2020-06-23 01:13:05 +09:00
parent d08cfe5d0e
commit c9ebb1e2c7
3 changed files with 109 additions and 39 deletions

View File

@ -3,7 +3,7 @@ import gym
from mujoco_maze.maze_task import TaskRegistry
MAZE_IDS = ["Maze", "Push", "Fall"] # TODO: Block, BlockMaze
MAZE_IDS = ["Maze", "Push", "Fall", "4Rooms"] # TODO: Block, BlockMaze
def _get_kwargs(maze_id: str) -> tuple:

View File

@ -40,7 +40,7 @@ class MazeEnv(gym.Env):
def __init__(
self,
maze_task: Type[maze_task.MazeTask] = maze_task.SingleGoalSparseEMaze(),
maze_task: Type[maze_task.MazeTask] = maze_task.SingleGoalSparseUMaze,
n_bins: int = 0,
sensor_range: float = 3.0,
sensor_span: float = 2 * np.pi,
@ -52,7 +52,7 @@ class MazeEnv(gym.Env):
*args,
**kwargs,
) -> None:
self._task = maze_task()
self._task = maze_task(maze_size_scaling)
xml_path = os.path.join(MODEL_DIR, self.MODEL_CLASS.FILE)
tree = ET.parse(xml_path)
@ -246,8 +246,23 @@ class MazeEnv(gym.Env):
if "name" not in geom.attrib:
raise Exception("Every geom of the torso must have a name " "defined")
# Set goals
asset = tree.find(".//asset")
for i, goal in enumerate(self._task.goals):
ET.SubElement(asset, "material", name=f"goal{i}", rgba=goal.rbga_str())
z = goal.pos[2] if goal.dim >= 3 else 0.0
ET.SubElement(
worldbody,
"site",
name=f"goal_site{i}",
pos=f"{goal.pos[0]} {goal.pos[1]} {z}",
size=f"{maze_size_scaling * 0.1}",
material=f"goal{i}",
)
_, file_path = tempfile.mkstemp(text=True, suffix=".xml")
tree.write(file_path)
self.world_tree = tree
self.wrapped_env = self.MODEL_CLASS(*args, file_path=file_path, **kwargs)
def get_ori(self):
@ -458,12 +473,18 @@ class MazeEnv(gym.Env):
self.t = 0
self.wrapped_env.reset()
# Sample a new goal
self._task.sample_goals(self._maze_size_scaling)
if self._task.sample_goals():
self.set_marker()
if len(self._init_positions) > 1:
xy = np.random.choice(self._init_positions)
self.wrapped_env.set_xy(xy)
return self._get_obs()
def set_marker(self):
for i, goal in enumerate(self._task.goals):
idx = self.model.site_name2id(f"goal{i}")
self.data.site_xpos[idx][: len(goal.pos)] = goal.pos
@property
def viewer(self):
return self.wrapped_env.viewer

View File

@ -1,65 +1,74 @@
from abc import ABC, abstractmethod
from typing import Dict, List, Type
from typing import Dict, List, Tuple, Type
import numpy as np
from mujoco_maze.maze_env_utils import MazeCell
Rgb = Tuple[float, float, float]
RED = (0.7, 0.1, 0.1)
GREEN = (0.1, 0.7, 0.1)
class MazeGoal:
THRESHOLD: float = 0.6
def __init__(self, goal: np.ndarray, reward_scale: float = 1.0) -> None:
self.goal = goal
self.goal_dim = goal.shape[0]
def __init__(
self, pos: np.ndarray, reward_scale: float = 1.0, rgb: Rgb = RED
) -> None:
assert 0.0 <= reward_scale <= 1.0
self.pos = pos
self.dim = pos.shape[0]
self.reward_scale = reward_scale
self.rgb = rgb
def rbga_str(self) -> str:
r, g, b = self.rgb
return f"{r} {g} {b} 1"
def neighbor(self, obs: np.ndarray) -> float:
return np.linalg.norm(obs[: self.goal_dim] - self.goal) <= self.THRESHOLD
return np.linalg.norm(obs[: self.dim] - self.pos) <= self.THRESHOLD
def euc_dist(self, obs: np.ndarray) -> float:
return np.sum(np.square(obs[: self.goal_dim] - self.goal)) ** 0.5
return np.sum(np.square(obs[: self.dim] - self.pos)) ** 0.5
class MazeTask(ABC):
REWARD_THRESHOLD: float
def __init__(self) -> None:
def __init__(self, scale: float) -> None:
self.scale = scale
self.goals = []
@abstractmethod
def sample_goals(self, scale: float) -> None:
pass
def sample_goals(self) -> bool:
return False
def termination(self, obs: np.ndarray) -> bool:
for goal in self.goals:
if goal.neighbor(obs):
return True
return False
@abstractmethod
def reward(self, obs: np.ndarray) -> float:
pass
@abstractmethod
def termination(self, obs: np.ndarray) -> bool:
pass
@staticmethod
@abstractmethod
def create_maze() -> List[List[MazeCell]]:
pass
class SingleGoalSparseEMaze(MazeTask):
class SingleGoalSparseUMaze(MazeTask):
REWARD_THRESHOLD: float = 0.9
def sample_goals(self, scale: float) -> None:
goal = MazeGoal(np.array([0.0, 2.0 * scale]))
self.goals = [goal]
def __init__(self, scale: float) -> None:
super().__init__(scale)
self.goals = [MazeGoal(np.array([0.0, 2.0 * scale]))]
def reward(self, obs: np.ndarray) -> float:
if self.goals[0].neighbor(obs):
return 1.0
else:
return -0.0001
def termination(self, obs: np.ndarray) -> bool:
return self.goals[0].neighbor(obs)
return 1.0 if self.termination(obs) else -0.0001
@staticmethod
def create_maze() -> List[List[MazeCell]]:
@ -73,17 +82,17 @@ class SingleGoalSparseEMaze(MazeTask):
]
class SingleGoalDenseEMaze(SingleGoalSparseEMaze):
class SingleGoalDenseUMaze(SingleGoalSparseUMaze):
REWARD_THRESHOLD: float = 1000.0
def reward(self, obs: np.ndarray) -> float:
return -self.goals[0].euc_dist(obs)
class SingleGoalSparsePush(SingleGoalSparseEMaze):
def sample_goals(self, scale: float) -> None:
goal = MazeGoal(np.array([0.0, 2.375 * scale]))
self.goals = [goal]
class SingleGoalSparsePush(SingleGoalSparseUMaze):
def __init__(self, scale: float) -> None:
super().__init__(scale)
self.goals = [MazeGoal(np.array([0.0, 2.375 * scale]))]
@staticmethod
def create_maze() -> List[List[MazeCell]]:
@ -104,10 +113,10 @@ class SingleGoalDensePush(SingleGoalSparsePush):
return -self.goals[0].euc_dist(obs)
class SingleGoalSparseFall(SingleGoalSparseEMaze):
def sample_goals(self, scale: float) -> None:
goal = MazeGoal(np.array([0.0, 3.375 * scale, 4.5]))
self.goals = [goal]
class SingleGoalSparseFall(SingleGoalSparseUMaze):
def __init__(self, scale: float) -> None:
super().__init__(scale)
self.goals = [MazeGoal(np.array([0.0, 3.375 * scale, 4.5]))]
@staticmethod
def create_maze() -> List[List[MazeCell]]:
@ -129,9 +138,49 @@ class SingleGoalDenseFall(SingleGoalSparseFall):
return -self.goals[0].euc_dist(obs)
class SingleGoalSparse4Rooms(MazeTask):
REWARD_THRESHOLD: float = 0.9
def __init__(self, scale: float) -> None:
super().__init__(scale)
self.goals = [MazeGoal(np.array([6.0 * scale, 6.0 * scale]))]
def reward(self, obs: np.ndarray) -> float:
for goal in self.goals:
if goal.neighbor(obs):
return goal.reward_scale
return -0.0001
@staticmethod
def create_maze() -> List[List[MazeCell]]:
E, B, R = MazeCell.EMPTY, MazeCell.BLOCK, MazeCell.ROBOT
return [
[B, B, B, B, B, B, B, B, B],
[B, R, E, E, B, E, E, E, B],
[B, E, E, E, E, E, E, E, B],
[B, E, E, E, B, E, E, E, B],
[B, B, E, B, B, B, E, B, B],
[B, E, E, E, B, E, E, E, B],
[B, E, E, E, E, E, E, E, B],
[B, E, E, E, B, E, E, E, B],
[B, B, B, B, B, B, B, B, B],
]
class SubGoalSparse4Rooms(SingleGoalSparse4Rooms):
def __init__(self, scale: float) -> None:
super().__init__(scale)
self.goals = [
MazeGoal(np.array([6.0 * scale, 6.0 * scale])),
MazeGoal(np.array([0.0 * scale, 6.0 * scale]), 0.5, GREEN),
MazeGoal(np.array([6.0 * scale, 0.0 * scale]), 0.5, GREEN),
]
class TaskRegistry:
REGISTRY: Dict[str, List[Type[MazeTask]]] = {
"Maze": [SingleGoalDenseEMaze, SingleGoalSparseEMaze],
"Maze": [SingleGoalDenseUMaze, SingleGoalSparseUMaze],
"Push": [SingleGoalDensePush, SingleGoalSparsePush],
"Fall": [SingleGoalDenseFall, SingleGoalSparseFall],
"4Rooms": [SingleGoalSparse4Rooms, SubGoalSparse4Rooms],
}