Merge pull request #8 from kngwyu/no-reward-room

No reward envs, web-based visualizer, and so on
This commit is contained in:
Yuji Kanagawa 2021-06-04 16:26:35 +09:00 committed by GitHub
commit ca9f4daaf4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
17 changed files with 683 additions and 362 deletions

View File

@ -26,7 +26,7 @@ jobs:
- name: Install Poetry - name: Install Poetry
run: pip install poetry run: pip install poetry
- name: Install Mujoco Dependencies - name: Install Mujoco Dependencies
run: sudo apt install libosmesa6-dev libglfw3 libglew-dev patchelf libgl1-mesa-glx -y run: sudo apt update && sudo apt install libosmesa6-dev libglfw3 libglew-dev patchelf libgl1-mesa-glx -y
- name: Install Mujoco - name: Install Mujoco
run: | run: |
mkdir ~/.mujoco mkdir ~/.mujoco

2
MANIFEST.in Normal file
View File

@ -0,0 +1,2 @@
include mujoco-maze/static/favicon.ico
include mujoco-maze/templates/index.html

View File

@ -9,14 +9,15 @@ and [openai gym][gym].
Thankfully, this project is based on the code from [rllab] and Thankfully, this project is based on the code from [rllab] and
[tensorflow/models][models]. [tensorflow/models][models].
Note that [d4rl][d4rl] and [dm_control][dm_control] have similar maze Note that [d4rl] and [dm_control] have similar maze
environments, and you can also check them. environments, and you can also check them.
But, if you want more customizable or minimal one, I recommend this. But, if you want more customizable or minimal one, I recommend this.
## Usage ## Usage
Importing `mujoco_maze` registers environments and environments listed Importing `mujoco_maze` registers environments and you can load
below are available via `gym.make`. environments by `gym.make`.
All available environments listed are listed in [Environments] section.
E.g.,: E.g.,:
```python ```python
@ -116,7 +117,7 @@ not tested well.
## License ## License
This project is licensed under Apache License, Version 2.0 This project is licensed under Apache License, Version 2.0
([LICENSE-APACHE](LICENSE) or http://www.apache.org/licenses/LICENSE-2.0). ([LICENSE](LICENSE) or http://www.apache.org/licenses/LICENSE-2.0).
[d4rl]: https://github.com/rail-berkeley/d4rl [d4rl]: https://github.com/rail-berkeley/d4rl
[dm_control]: https://github.com/deepmind/dm_control [dm_control]: https://github.com/deepmind/dm_control

View File

@ -11,7 +11,7 @@ from gym.utils import EzPickle
class AgentModel(ABC, MujocoEnv, EzPickle): class AgentModel(ABC, MujocoEnv, EzPickle):
FILE: str FILE: str
MANUAL_COLLISION: bool MANUAL_COLLISION: bool
ORI_IND: int ORI_IND: Optional[int] = None
RADIUS: Optional[float] = None RADIUS: Optional[float] = None
def __init__(self, file_path: str, frame_skip: int) -> None: def __init__(self, file_path: str, frame_skip: int) -> None:
@ -27,16 +27,13 @@ class AgentModel(ABC, MujocoEnv, EzPickle):
@abstractmethod @abstractmethod
def _get_obs(self) -> np.ndarray: def _get_obs(self) -> np.ndarray:
"""Returns the observation from the model. """Returns the observation from the model."""
"""
pass pass
def get_xy(self) -> np.ndarray: def get_xy(self) -> np.ndarray:
"""Returns the coordinate of the agent. """Returns the coordinate of the agent."""
"""
pass pass
def set_xy(self, xy: np.ndarray) -> None: def set_xy(self, xy: np.ndarray) -> None:
"""Set the coordinate of the agent. """Set the coordinate of the agent."""
"""
pass pass

View File

@ -82,7 +82,9 @@ class AntEnv(AgentModel):
def reset_model(self): def reset_model(self):
qpos = self.init_qpos + self.np_random.uniform( qpos = self.init_qpos + self.np_random.uniform(
size=self.model.nq, low=-0.1, high=0.1, size=self.model.nq,
low=-0.1,
high=0.1,
) )
qvel = self.init_qvel + self.np_random.randn(self.model.nv) * 0.1 qvel = self.init_qvel + self.np_random.randn(self.model.nv) * 0.1

0
mujoco_maze/assets/ant.xml Executable file → Normal file
View File

0
mujoco_maze/assets/point.xml Executable file → Normal file
View File

View File

@ -10,7 +10,7 @@ import itertools as it
import os import os
import tempfile import tempfile
import xml.etree.ElementTree as ET import xml.etree.ElementTree as ET
from typing import List, Tuple, Type from typing import Any, List, Optional, Tuple, Type
import gym import gym
import numpy as np import numpy as np
@ -27,25 +27,20 @@ class MazeEnv(gym.Env):
self, self,
model_cls: Type[AgentModel], model_cls: Type[AgentModel],
maze_task: Type[maze_task.MazeTask] = maze_task.MazeTask, maze_task: Type[maze_task.MazeTask] = maze_task.MazeTask,
top_down_view: float = False, include_position: bool = True,
maze_height: float = 0.5, maze_height: float = 0.5,
maze_size_scaling: float = 4.0, maze_size_scaling: float = 4.0,
inner_reward_scaling: float = 1.0, inner_reward_scaling: float = 1.0,
restitution_coef: float = 0.8, restitution_coef: float = 0.8,
task_kwargs: dict = {}, task_kwargs: dict = {},
*args, websock_port: Optional[int] = None,
**kwargs, **kwargs,
) -> None: ) -> None:
self.t = 0 # time steps
self._task = maze_task(maze_size_scaling, **task_kwargs) self._task = maze_task(maze_size_scaling, **task_kwargs)
xml_path = os.path.join(MODEL_DIR, model_cls.FILE)
tree = ET.parse(xml_path)
worldbody = tree.find(".//worldbody")
self._maze_height = height = maze_height self._maze_height = height = maze_height
self._maze_size_scaling = size_scaling = maze_size_scaling self._maze_size_scaling = size_scaling = maze_size_scaling
self._inner_reward_scaling = inner_reward_scaling self._inner_reward_scaling = inner_reward_scaling
self.t = 0 # time steps
self._observe_blocks = self._task.OBSERVE_BLOCKS self._observe_blocks = self._task.OBSERVE_BLOCKS
self._put_spin_near_agent = self._task.PUT_SPIN_NEAR_AGENT self._put_spin_near_agent = self._task.PUT_SPIN_NEAR_AGENT
# Observe other objectives # Observe other objectives
@ -70,11 +65,19 @@ class MazeEnv(gym.Env):
if model_cls.RADIUS is None: if model_cls.RADIUS is None:
raise ValueError("Manual collision needs radius of the model") raise ValueError("Manual collision needs radius of the model")
self._collision = maze_env_utils.CollisionDetector( self._collision = maze_env_utils.CollisionDetector(
structure, size_scaling, torso_x, torso_y, model_cls.RADIUS, structure,
size_scaling,
torso_x,
torso_y,
model_cls.RADIUS,
) )
# Now all object balls have size=1.0 # Now all object balls have size=1.0
self._objball_collision = maze_env_utils.CollisionDetector( self._objball_collision = maze_env_utils.CollisionDetector(
structure, size_scaling, torso_x, torso_y, self._task.OBJECT_BALL_SIZE, structure,
size_scaling,
torso_x,
torso_y,
self._task.OBJECT_BALL_SIZE,
) )
else: else:
self._collision = None self._collision = None
@ -86,6 +89,11 @@ class MazeEnv(gym.Env):
# walls (immovable), chasms (fall), movable blocks # walls (immovable), chasms (fall), movable blocks
self._view = np.zeros([5, 5, 3]) self._view = np.zeros([5, 5, 3])
# Let's create MuJoCo XML
xml_path = os.path.join(MODEL_DIR, model_cls.FILE)
tree = ET.parse(xml_path)
worldbody = tree.find(".//worldbody")
height_offset = 0.0 height_offset = 0.0
if self.elevated: if self.elevated:
# Increase initial z-pos of ant. # Increase initial z-pos of ant.
@ -141,7 +149,15 @@ class MazeEnv(gym.Env):
# Movable block. # Movable block.
self.movable_blocks.append(f"movable_{i}_{j}") self.movable_blocks.append(f"movable_{i}_{j}")
_add_movable_block( _add_movable_block(
worldbody, struct, i, j, size_scaling, x, y, h, height_offset, worldbody,
struct,
i,
j,
size_scaling,
x,
y,
h,
height_offset,
) )
elif struct.is_object_ball(): elif struct.is_object_ball():
# Movable Ball # Movable Ball
@ -173,8 +189,11 @@ class MazeEnv(gym.Env):
_, file_path = tempfile.mkstemp(text=True, suffix=".xml") _, file_path = tempfile.mkstemp(text=True, suffix=".xml")
tree.write(file_path) tree.write(file_path)
self.world_tree = tree self.world_tree = tree
self.wrapped_env = model_cls(*args, file_path=file_path, **kwargs) self.wrapped_env = model_cls(file_path=file_path, **kwargs)
self.observation_space = self._get_obs_space() self.observation_space = self._get_obs_space()
self._websock_port = websock_port
self._mj_offscreen_viewer = None
self._websock_server_pipe = None
@property @property
def has_extended_obs(self) -> bool: def has_extended_obs(self) -> bool:
@ -337,11 +356,32 @@ class MazeEnv(gym.Env):
self.data.site_xpos[idx][: len(goal.pos)] = goal.pos self.data.site_xpos[idx][: len(goal.pos)] = goal.pos
@property @property
def viewer(self): def viewer(self) -> Any:
return self.wrapped_env.viewer if self._websock_port is not None:
return self._mj_viewer
else:
return self.wrapped_env.viewer
def render(self, *args, **kwargs): def _render_image(self) -> np.ndarray:
return self.wrapped_env.render(*args, **kwargs) self._mj_offscreen_viewer._set_mujoco_buffers()
self._mj_offscreen_viewer.render(640, 480)
return np.asarray(
self._mj_offscreen_viewer.read_pixels(640, 480, depth=False)[::-1, :, :],
dtype=np.uint8,
)
def render(self, mode="human", **kwargs) -> Optional[np.ndarray]:
if mode == "human" and self._websock_port is not None:
if self._mj_offscreen_viewer is None:
from mujoco_py import MjRenderContextOffscreen as MjRCO
from mujoco_maze.websock_viewer import start_server
self._mj_offscreen_viewer = MjRCO(self.wrapped_env.sim)
self._websock_server_pipe = start_server(self._websock_port)
self._websock_server_pipe.send(self._render_image())
else:
return self.wrapped_env.render(mode, **kwargs)
@property @property
def action_space(self): def action_space(self):
@ -406,6 +446,8 @@ class MazeEnv(gym.Env):
def close(self) -> None: def close(self) -> None:
self.wrapped_env.close() self.wrapped_env.close()
if self._websock_server_pipe is not None:
self._websock_server_pipe.send(None)
def _add_object_ball( def _add_object_ball(
@ -479,7 +521,10 @@ def _add_movable_block(
shrink = 1.0 shrink = 1.0
size = size_scaling * 0.5 * shrink size = size_scaling * 0.5 * shrink
movable_body = ET.SubElement( movable_body = ET.SubElement(
worldbody, "body", name=f"movable_{i}_{j}", pos=f"{x} {y} {h}", worldbody,
"body",
name=f"movable_{i}_{j}",
pos=f"{x} {y} {h}",
) )
ET.SubElement( ET.SubElement(
movable_body, movable_body,

View File

@ -13,7 +13,7 @@ from typing import Any, List, Optional, Sequence, Tuple, Union
import numpy as np import numpy as np
Self = Any Self = Any
Point = np.complex Point = complex
class MazeCell(Enum): class MazeCell(Enum):
@ -83,13 +83,15 @@ class MazeCell(Enum):
class Line: class Line:
def __init__( def __init__(
self, p1: Union[Sequence[float], Point], p2: Union[Sequence[float], Point], self,
p1: Union[Sequence[float], Point],
p2: Union[Sequence[float], Point],
) -> None: ) -> None:
self.p1 = p1 if isinstance(p1, Point) else np.complex(*p1) self.p1 = p1 if isinstance(p1, Point) else complex(*p1)
self.p2 = p2 if isinstance(p2, Point) else np.complex(*p2) self.p2 = p2 if isinstance(p2, Point) else complex(*p2)
self.v1 = self.p2 - self.p1 self.v1 = self.p2 - self.p1
self.conj_v1 = np.conjugate(self.v1) self.conj_v1 = self.v1.conjugate()
self.norm = np.absolute(self.v1) self.norm = abs(self.v1)
def _intersect(self, other: Self) -> bool: def _intersect(self, other: Self) -> bool:
v2 = other.p1 - self.p1 v2 = other.p1 - self.p1
@ -98,15 +100,15 @@ class Line:
def _projection(self, p: Point) -> Point: def _projection(self, p: Point) -> Point:
nv1 = -self.v1 nv1 = -self.v1
nv1_norm = np.absolute(nv1) ** 2 nv1_norm = abs(nv1) ** 2
scale = np.real(np.conjugate(p - self.p1) * nv1) / nv1_norm scale = ((p - self.p1).conjugate() * nv1).real / nv1_norm
return self.p1 + nv1 * scale return self.p1 + nv1 * scale
def reflection(self, p: Point) -> Point: def reflection(self, p: Point) -> Point:
return p + 2.0 * (self._projection(p) - p) return p + 2.0 * (self._projection(p) - p)
def distance(self, p: Point) -> float: def distance(self, p: Point) -> float:
return np.absolute(p - self._projection(p)) return abs(p - self._projection(p))
def intersect(self, other: Self) -> Point: def intersect(self, other: Self) -> Point:
if self._intersect(other) and other._intersect(self): if self._intersect(other) and other._intersect(self):
@ -141,8 +143,7 @@ class Collision:
class CollisionDetector: class CollisionDetector:
"""For manual collision detection. """For manual collision detection."""
"""
EPS: float = 0.05 EPS: float = 0.05
NEIGHBORS: List[Tuple[int, int]] = [[0, -1], [-1, 0], [0, 1], [1, 0]] NEIGHBORS: List[Tuple[int, int]] = [[0, -1], [-1, 0], [0, 1], [1, 0]]
@ -197,9 +198,9 @@ class CollisionDetector:
if len(collisions) == 0: if len(collisions) == 0:
return None return None
col = collisions[0] col = collisions[0]
dist = np.absolute(col._point - move.p1) dist = abs(col._point - move.p1)
for collision in collisions[1:]: for collision in collisions[1:]:
new_dist = np.absolute(collision._point - move.p1) new_dist = abs(collision._point - move.p1)
if new_dist < dist: if new_dist < dist:
col, dist = collision, new_dist col, dist = collision, new_dist
return col return col

View File

@ -145,6 +145,37 @@ class DistRewardSimpleRoom(GoalRewardSimpleRoom, DistRewardMixIn):
pass pass
class GoalRewardSquareRoom(GoalRewardUMaze):
MAZE_SIZE_SCALING: Scaling = Scaling(4.0, 4.0, 2.0)
def __init__(self, scale: float, goal: Tuple[float, float] = (1.0, 0.0)) -> None:
super().__init__(scale)
self.goals = [MazeGoal(np.array(goal) * scale)]
@staticmethod
def create_maze() -> List[List[MazeCell]]:
E, B, R = MazeCell.EMPTY, MazeCell.BLOCK, MazeCell.ROBOT
return [
[B, B, B, B, B],
[B, E, E, E, B],
[B, E, R, E, B],
[B, E, E, E, B],
[B, B, B, B, B],
]
class NoRewardSquareRoom(GoalRewardSimpleRoom):
def __init__(self, scale: float) -> None:
super().__init__(scale)
def reward(self, _obs: np.ndarray) -> float:
return 0.0
class DistRewardSquareRoom(GoalRewardSquareRoom, DistRewardMixIn):
pass
class GoalRewardPush(GoalRewardUMaze): class GoalRewardPush(GoalRewardUMaze):
OBSERVE_BLOCKS: bool = True OBSERVE_BLOCKS: bool = True
@ -329,6 +360,48 @@ class SubGoalTRoom(GoalRewardTRoom):
) )
class NoRewardCorridor(MazeTask):
REWARD_THRESHOLD: float = 0.0
MAZE_SIZE_SCALING: Scaling = Scaling(4.0, 4.0, 1.0)
def reward(self, _obs: np.ndarray) -> float:
return 0.0
@staticmethod
def create_maze() -> List[List[MazeCell]]:
E, B, R = MazeCell.EMPTY, MazeCell.BLOCK, MazeCell.ROBOT
return [
[B, B, B, B, B, B, B, B, B],
[B, E, E, B, E, E, E, E, B],
[B, E, E, B, E, E, E, E, B],
[B, E, E, E, E, E, B, B, B],
[B, E, E, E, R, E, E, E, B],
[B, B, B, E, E, E, E, E, B],
[B, E, E, E, E, B, E, E, B],
[B, E, E, E, E, B, E, E, B],
[B, B, B, B, B, B, B, B, B],
]
class GoalRewardCorridor(NoRewardCorridor):
REWARD_THRESHOLD: float = 0.9
PENALTY: float = -0.0001
def __init__(self, scale: float, goal: Tuple[float, float] = (3.0, -3.0)) -> None:
super().__init__(scale)
self.goals.append(MazeGoal(np.array(goal) * scale))
def reward(self, obs: np.ndarray) -> float:
for goal in self.goals:
if goal.neighbor(obs):
return goal.reward_scale
return self.PENALTY
class DistRewardCorridor(GoalRewardCorridor, DistRewardMixIn):
pass
class GoalRewardBlockMaze(GoalRewardUMaze): class GoalRewardBlockMaze(GoalRewardUMaze):
MAZE_SIZE_SCALING: Scaling = Scaling(8.0, 4.0, None) MAZE_SIZE_SCALING: Scaling = Scaling(8.0, 4.0, None)
OBSERVE_BLOCKS: bool = True OBSERVE_BLOCKS: bool = True
@ -406,6 +479,14 @@ class DistRewardBilliard(GoalRewardBilliard):
return -self.goals[0].euc_dist(obs[3:6]) / self.scale return -self.goals[0].euc_dist(obs[3:6]) / self.scale
class NoRewardBilliard(GoalRewardBilliard):
def __init__(self, scale: float) -> None:
MazeTask.__init__(self, scale)
def reward(self, _obs: np.ndarray) -> float:
return 0.0
class SubGoalBilliard(GoalRewardBilliard): class SubGoalBilliard(GoalRewardBilliard):
def __init__( def __init__(
self, self,
@ -453,6 +534,7 @@ class BanditBilliard(SubGoalBilliard):
class TaskRegistry: class TaskRegistry:
REGISTRY: Dict[str, List[Type[MazeTask]]] = { REGISTRY: Dict[str, List[Type[MazeTask]]] = {
"SimpleRoom": [DistRewardSimpleRoom, GoalRewardSimpleRoom], "SimpleRoom": [DistRewardSimpleRoom, GoalRewardSimpleRoom],
"SquareRoom": [DistRewardSquareRoom, GoalRewardSquareRoom, NoRewardSquareRoom],
"UMaze": [DistRewardUMaze, GoalRewardUMaze], "UMaze": [DistRewardUMaze, GoalRewardUMaze],
"Push": [DistRewardPush, GoalRewardPush], "Push": [DistRewardPush, GoalRewardPush],
"Fall": [DistRewardFall, GoalRewardFall], "Fall": [DistRewardFall, GoalRewardFall],
@ -460,11 +542,13 @@ class TaskRegistry:
"4Rooms": [DistReward4Rooms, GoalReward4Rooms, SubGoal4Rooms], "4Rooms": [DistReward4Rooms, GoalReward4Rooms, SubGoal4Rooms],
"TRoom": [DistRewardTRoom, GoalRewardTRoom, SubGoalTRoom], "TRoom": [DistRewardTRoom, GoalRewardTRoom, SubGoalTRoom],
"BlockMaze": [DistRewardBlockMaze, GoalRewardBlockMaze], "BlockMaze": [DistRewardBlockMaze, GoalRewardBlockMaze],
"Corridor": [DistRewardCorridor, GoalRewardCorridor, NoRewardCorridor],
"Billiard": [ "Billiard": [
DistRewardBilliard, DistRewardBilliard, # v0
GoalRewardBilliard, GoalRewardBilliard, # v1
SubGoalBilliard, SubGoalBilliard, # v2
BanditBilliard, BanditBilliard, # v3
NoRewardBilliard, # v4
], ],
} }

View File

@ -22,7 +22,7 @@ class PointEnv(AgentModel):
VELOCITY_LIMITS: float = 10.0 VELOCITY_LIMITS: float = 10.0
def __init__(self, file_path: Optional[str] = None): def __init__(self, file_path: Optional[str] = None) -> None:
super().__init__(file_path, 1) super().__init__(file_path, 1)
high = np.inf * np.ones(6, dtype=np.float32) high = np.inf * np.ones(6, dtype=np.float32)
high[3:] = self.VELOCITY_LIMITS * 1.2 high[3:] = self.VELOCITY_LIMITS * 1.2

View File

@ -1,7 +1,7 @@
""" """
Based on the reacher in `dm_control`_. Based on the reacher in `dm_control`_.
.. _gym: https://github.com/openai/gym .. _dm_control: https://github.com/deepmind/dm_control
""" """
from typing import Tuple from typing import Tuple
@ -54,10 +54,14 @@ class ReacherEnv(AgentModel):
def reset_model(self) -> np.ndarray: def reset_model(self) -> np.ndarray:
qpos = self.init_qpos + self.np_random.uniform( qpos = self.init_qpos + self.np_random.uniform(
low=-0.1, high=0.1, size=self.model.nq, low=-0.1,
high=0.1,
size=self.model.nq,
) )
qvel = self.init_qvel + self.np_random.uniform( qvel = self.init_qvel + self.np_random.uniform(
low=-0.1, high=0.1, size=self.model.nv, low=-0.1,
high=0.1,
size=self.model.nv,
) )
self.set_state(qpos, qvel) self.set_state(qpos, qvel)

View File

@ -37,7 +37,6 @@ class SwimmerEnv(AgentModel):
def step(self, action: np.ndarray) -> Tuple[np.ndarray, float, bool, dict]: def step(self, action: np.ndarray) -> Tuple[np.ndarray, float, bool, dict]:
xy_pos_before = self.sim.data.qpos[:2].copy() xy_pos_before = self.sim.data.qpos[:2].copy()
self.do_simulation(action, self.frame_skip) self.do_simulation(action, self.frame_skip)
forward_reward = self._forward_reward(xy_pos_before) forward_reward = self._forward_reward(xy_pos_before)
ctrl_cost = self._ctrl_cost_weight * np.sum(np.square(action)) ctrl_cost = self._ctrl_cost_weight * np.sum(np.square(action))
return ( return (
@ -55,10 +54,14 @@ class SwimmerEnv(AgentModel):
def reset_model(self) -> np.ndarray: def reset_model(self) -> np.ndarray:
qpos = self.init_qpos + self.np_random.uniform( qpos = self.init_qpos + self.np_random.uniform(
low=-0.1, high=0.1, size=self.model.nq, low=-0.1,
high=0.1,
size=self.model.nq,
) )
qvel = self.init_qvel + self.np_random.uniform( qvel = self.init_qvel + self.np_random.uniform(
low=-0.1, high=0.1, size=self.model.nv, low=-0.1,
high=0.1,
size=self.model.nv,
) )
self.set_state(qpos, qvel) self.set_state(qpos, qvel)

View File

@ -0,0 +1,116 @@
import asyncio
import io
import multiprocessing as mp
import fastapi
import uvicorn
from PIL import Image
HTML = """
<!DOCTYPE html>
<html>
<head>
<title>MuJoCo maze visualizer</title>
</head>
<body>
<h2>MuJoCo Maze Visualizer</h2>
<script>
var ws_image = new WebSocket('ws://127.0.0.1:{{port}}/ws');
ws_image.binaryType = "arraybuffer";
ws_image.onmessage = function(event) {
var canvas = document.getElementById('canvas');
var ctx = canvas.getContext('2d');
var blob = new Blob([event.data], {type:'image/png'});
var url = URL.createObjectURL(blob);
var image = new Image();
image.onload = function() {
ctx.drawImage(image, 0, 0);
}
console.log(url);
image.src = url;
}
function saveVideo() {
var xhr = new XMLHttpRequest();
xhr.open('GET', 'https://via.placeholder.com/150', true);
xhr.responseType = 'blob';
xhr.onerror = err => {
alert('Video is not ready');
};
xhr.send();
}
</script>
<div>
<canvas id="canvas" width="600" height="480"></canvas>
</div>
<a href="video">Video</a>
</body>
</html>
"""
class _ServerWorker(mp.Process):
def __init__(self, pipe: mp.connection.Pipe, port: int) -> None:
super().__init__()
self.pipe = pipe
self.port = port
self.video_frames = []
def _run_server(self) -> None:
app = fastapi.FastAPI()
html = HTML.replace("{{port}}", str(self.port))
@app.get("/")
async def root():
return fastapi.responses.HTMLResponse(html)
server = None
@app.websocket("/ws")
async def ws(websocket: fastapi.WebSocket):
await websocket.accept()
loop = asyncio.get_running_loop()
while True:
image_array = await loop.run_in_executor(None, self.pipe.recv)
if image_array is None:
break
self.video_frames.append(image_array)
image = Image.fromarray(image_array)
with io.BytesIO() as stream:
image.save(stream, format="png")
res = stream.getvalue()
await websocket.send_bytes(res)
await websocket.close()
server.should_exit = True
@app.get("/video")
async def video():
import imageio
writer = imageio.get_writer("/tmp/mujoco-maze-video.mp4")
for frame in self.video_frames:
writer.append_data(frame)
writer.close()
video = open("/tmp/mujoco-maze-video.mp4", mode="rb")
return fastapi.responses.StreamingResponse(video, media_type="video/mp4")
config = uvicorn.Config(app, port=self.port)
server = uvicorn.Server(config)
server.run()
def run(self) -> None:
try:
self._run_server()
except KeyboardInterrupt:
pass
except Exception as e:
print("Exception in websocket server")
raise e
def start_server(port: int) -> mp.connection.Connection:
mainproc_pipe, server_pipe = mp.Pipe()
worker = _ServerWorker(server_pipe, port)
worker.start()
return mainproc_pipe

674
poetry.lock generated
View File

@ -1,117 +1,109 @@
[[package]] [[package]]
category = "dev"
description = "Atomic file writes."
name = "atomicwrites" name = "atomicwrites"
version = "1.4.0"
description = "Atomic file writes."
category = "dev"
optional = false optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
version = "1.4.0"
[[package]] [[package]]
category = "dev"
description = "Classes Without Boilerplate"
name = "attrs" name = "attrs"
version = "21.2.0"
description = "Classes Without Boilerplate"
category = "dev"
optional = false optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
version = "20.2.0"
[package.extras] [package.extras]
dev = ["coverage (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six", "zope.interface", "sphinx", "sphinx-rtd-theme", "pre-commit"] dev = ["coverage[toml] (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six", "mypy", "pytest-mypy-plugins", "zope.interface", "furo", "sphinx", "sphinx-notfound-page", "pre-commit"]
docs = ["sphinx", "sphinx-rtd-theme", "zope.interface"] docs = ["furo", "sphinx", "zope.interface", "sphinx-notfound-page"]
tests = ["coverage (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six", "zope.interface"] tests = ["coverage[toml] (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six", "mypy", "pytest-mypy-plugins", "zope.interface"]
tests_no_zope = ["coverage (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six"] tests_no_zope = ["coverage[toml] (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six", "mypy", "pytest-mypy-plugins"]
[[package]] [[package]]
category = "main"
description = "Foreign Function Interface for Python calling C code."
name = "cffi" name = "cffi"
version = "1.14.5"
description = "Foreign Function Interface for Python calling C code."
category = "main"
optional = false optional = false
python-versions = "*" python-versions = "*"
version = "1.14.3"
[package.dependencies] [package.dependencies]
pycparser = "*" pycparser = "*"
[[package]] [[package]]
category = "main"
description = "Extended pickling support for Python objects"
name = "cloudpickle" name = "cloudpickle"
version = "1.6.0"
description = "Extended pickling support for Python objects"
category = "main"
optional = false optional = false
python-versions = ">=3.5" python-versions = ">=3.5"
version = "1.6.0"
[[package]] [[package]]
category = "dev"
description = "Cross-platform colored terminal text."
marker = "sys_platform == \"win32\""
name = "colorama" name = "colorama"
version = "0.4.4"
description = "Cross-platform colored terminal text."
category = "dev"
optional = false optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
version = "0.4.3"
[[package]] [[package]]
category = "main"
description = "The Cython compiler for writing C extensions for the Python language."
name = "cython" name = "cython"
version = "0.29.23"
description = "The Cython compiler for writing C extensions for the Python language."
category = "main"
optional = false optional = false
python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*"
version = "0.29.21"
[[package]] [[package]]
category = "main"
description = "A python package that provides useful locks."
name = "fasteners" name = "fasteners"
version = "0.16"
description = "A python package that provides useful locks."
category = "main"
optional = false optional = false
python-versions = "*" python-versions = "*"
version = "0.15"
[package.dependencies] [package.dependencies]
monotonic = ">=0.1"
six = "*" six = "*"
[[package]] [[package]]
category = "main"
description = "Clean single-source support for Python 3 and 2"
name = "future"
optional = false
python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*"
version = "0.18.2"
[[package]]
category = "main"
description = "A ctypes-based wrapper for GLFW3."
name = "glfw" name = "glfw"
version = "2.1.0"
description = "A ctypes-based wrapper for GLFW3."
category = "main"
optional = false optional = false
python-versions = "*" python-versions = "*"
version = "2.0.0"
[[package]] [[package]]
category = "main"
description = "The OpenAI Gym: A toolkit for developing and comparing your reinforcement learning agents."
name = "gym" name = "gym"
version = "0.18.3"
description = "The OpenAI Gym: A toolkit for developing and comparing your reinforcement learning agents."
category = "main"
optional = false optional = false
python-versions = ">=3.5" python-versions = ">=3.6"
version = "0.17.3"
[package.dependencies] [package.dependencies]
cloudpickle = ">=1.2.0,<1.7.0" cloudpickle = ">=1.2.0,<1.7.0"
numpy = ">=1.10.4" numpy = ">=1.10.4"
pyglet = ">=1.4.0,<=1.5.0" Pillow = "<=8.2.0"
pyglet = ">=1.4.0,<=1.5.15"
scipy = "*" scipy = "*"
[package.extras] [package.extras]
all = ["atari_py (>=0.2.0,<0.3.0)", "pillow", "opencv-python", "box2d-py (>=2.3.5,<2.4.0)", "mujoco_py (>=1.50,<2.0)", "imageio", "mujoco_py (>=1.50,<2.0)", "imageio"] all = ["box2d-py (>=2.3.5,<2.4.0)", "opencv-python (>=3)", "imageio", "atari_py (>=0.2.0,<0.3.0)", "mujoco_py (>=1.50,<2.0)"]
atari = ["atari_py (>=0.2.0,<0.3.0)", "pillow", "opencv-python"] atari = ["atari_py (>=0.2.0,<0.3.0)", "opencv-python (>=3)"]
box2d = ["box2d-py (>=2.3.5,<2.4.0)"] box2d = ["box2d-py (>=2.3.5,<2.4.0)"]
mujoco = ["mujoco_py (>=1.50,<2.0)", "imageio"] mujoco = ["mujoco_py (>=1.50,<2.0)", "imageio"]
nomujoco = ["box2d-py (>=2.3.5,<2.4.0)", "opencv-python (>=3)", "atari_py (>=0.2.0,<0.3.0)"]
robotics = ["mujoco_py (>=1.50,<2.0)", "imageio"] robotics = ["mujoco_py (>=1.50,<2.0)", "imageio"]
[[package]] [[package]]
category = "main"
description = "Library for reading and writing a wide range of image, video, scientific, and volumetric data formats."
name = "imageio" name = "imageio"
version = "2.9.0"
description = "Library for reading and writing a wide range of image, video, scientific, and volumetric data formats."
category = "main"
optional = false optional = false
python-versions = ">=3.5" python-versions = ">=3.5"
version = "2.9.0"
[package.dependencies] [package.dependencies]
numpy = "*" numpy = "*"
@ -125,165 +117,191 @@ gdal = ["gdal"]
itk = ["itk"] itk = ["itk"]
[[package]] [[package]]
category = "dev"
description = "Read metadata from Python packages"
marker = "python_version < \"3.8\""
name = "importlib-metadata" name = "importlib-metadata"
version = "4.4.0"
description = "Read metadata from Python packages"
category = "dev"
optional = false optional = false
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7" python-versions = ">=3.6"
version = "2.0.0"
[package.dependencies] [package.dependencies]
typing-extensions = {version = ">=3.6.4", markers = "python_version < \"3.8\""}
zipp = ">=0.5" zipp = ">=0.5"
[package.extras] [package.extras]
docs = ["sphinx", "rst.linker"] docs = ["sphinx", "jaraco.packaging (>=8.2)", "rst.linker (>=1.9)"]
testing = ["packaging", "pep517", "importlib-resources (>=1.3)"] testing = ["pytest (>=4.6)", "pytest-checkdocs (>=2.4)", "pytest-flake8", "pytest-cov", "pytest-enabler (>=1.0.1)", "packaging", "pep517", "pyfakefs", "flufl.flake8", "pytest-black (>=0.3.7)", "pytest-mypy", "importlib-resources (>=1.3)"]
[[package]] [[package]]
category = "main" name = "iniconfig"
description = "An implementation of time.monotonic() for Python 2 & < 3.3" version = "1.1.1"
name = "monotonic" description = "iniconfig: brain-dead simple config-ini parsing"
category = "dev"
optional = false optional = false
python-versions = "*" python-versions = "*"
version = "1.5"
[[package]] [[package]]
category = "dev"
description = "More routines for operating on iterables, beyond itertools"
name = "more-itertools"
optional = false
python-versions = ">=3.5"
version = "8.5.0"
[[package]]
category = "main"
description = ""
name = "mujoco-py" name = "mujoco-py"
version = "2.0.2.13"
description = ""
category = "main"
optional = false optional = false
python-versions = ">=3.6" python-versions = ">=3.6"
version = "2.0.2.13"
[package.dependencies] [package.dependencies]
Cython = ">=0.27.2"
cffi = ">=1.10" cffi = ">=1.10"
Cython = ">=0.27.2"
fasteners = ">=0.15,<1.0" fasteners = ">=0.15,<1.0"
glfw = ">=1.4.0" glfw = ">=1.4.0"
imageio = ">=2.1.2" imageio = ">=2.1.2"
numpy = ">=1.11" numpy = ">=1.11"
[[package]] [[package]]
category = "main"
description = "NumPy is the fundamental package for array computing with Python."
name = "numpy" name = "numpy"
version = "1.19.5"
description = "NumPy is the fundamental package for array computing with Python."
category = "main"
optional = false optional = false
python-versions = ">=3.6" python-versions = ">=3.6"
version = "1.19.2"
[[package]]
category = "main"
description = "Python Imaging Library (Fork)"
name = "pillow"
optional = false
python-versions = ">=3.5"
version = "7.2.0"
[[package]] [[package]]
name = "packaging"
version = "20.9"
description = "Core utilities for Python packages"
category = "dev" category = "dev"
description = "plugin and hook calling mechanisms for python"
name = "pluggy"
optional = false optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
version = "0.13.1"
[package.dependencies] [package.dependencies]
[package.dependencies.importlib-metadata] pyparsing = ">=2.0.2"
python = "<3.8"
version = ">=0.12" [[package]]
name = "pillow"
version = "8.2.0"
description = "Python Imaging Library (Fork)"
category = "main"
optional = false
python-versions = ">=3.6"
[[package]]
name = "pluggy"
version = "0.13.1"
description = "plugin and hook calling mechanisms for python"
category = "dev"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
[package.dependencies]
importlib-metadata = {version = ">=0.12", markers = "python_version < \"3.8\""}
[package.extras] [package.extras]
dev = ["pre-commit", "tox"] dev = ["pre-commit", "tox"]
[[package]] [[package]]
category = "dev"
description = "library with cross-python path, ini-parsing, io, code, log facilities"
name = "py" name = "py"
version = "1.10.0"
description = "library with cross-python path, ini-parsing, io, code, log facilities"
category = "dev"
optional = false optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
version = "1.9.0"
[[package]] [[package]]
category = "main"
description = "C parser in Python"
name = "pycparser" name = "pycparser"
version = "2.20"
description = "C parser in Python"
category = "main"
optional = false optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
version = "2.20"
[[package]] [[package]]
category = "main"
description = "Cross-platform windowing and multimedia library"
name = "pyglet" name = "pyglet"
version = "1.5.15"
description = "Cross-platform windowing and multimedia library"
category = "main"
optional = false optional = false
python-versions = "*" python-versions = "*"
version = "1.5.0"
[package.dependencies]
future = "*"
[[package]] [[package]]
name = "pyparsing"
version = "2.4.7"
description = "Python parsing module"
category = "dev" category = "dev"
description = "pytest: simple powerful testing with Python"
name = "pytest"
optional = false optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*"
version = "3.10.1"
[package.dependencies]
atomicwrites = ">=1.0"
attrs = ">=17.4.0"
colorama = "*"
more-itertools = ">=4.0.0"
pluggy = ">=0.7"
py = ">=1.5.0"
setuptools = "*"
six = ">=1.10.0"
[[package]] [[package]]
category = "main" name = "pytest"
description = "SciPy: Scientific Library for Python" version = "6.2.4"
name = "scipy" description = "pytest: simple powerful testing with Python"
category = "dev"
optional = false
python-versions = ">=3.6"
[package.dependencies]
atomicwrites = {version = ">=1.0", markers = "sys_platform == \"win32\""}
attrs = ">=19.2.0"
colorama = {version = "*", markers = "sys_platform == \"win32\""}
importlib-metadata = {version = ">=0.12", markers = "python_version < \"3.8\""}
iniconfig = "*"
packaging = "*"
pluggy = ">=0.12,<1.0.0a1"
py = ">=1.8.2"
toml = "*"
[package.extras]
testing = ["argcomplete", "hypothesis (>=3.56)", "mock", "nose", "requests", "xmlschema"]
[[package]]
name = "scipy"
version = "1.5.4"
description = "SciPy: Scientific Library for Python"
category = "main"
optional = false optional = false
python-versions = ">=3.6" python-versions = ">=3.6"
version = "1.5.2"
[package.dependencies] [package.dependencies]
numpy = ">=1.14.5" numpy = ">=1.14.5"
[[package]] [[package]]
category = "main"
description = "Python 2 and 3 compatibility utilities"
name = "six" name = "six"
version = "1.16.0"
description = "Python 2 and 3 compatibility utilities"
category = "main"
optional = false optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*"
version = "1.15.0"
[[package]] [[package]]
name = "toml"
version = "0.10.2"
description = "Python Library for Tom's Obvious, Minimal Language"
category = "dev" category = "dev"
description = "Backport of pathlib-compatible object wrapper for zip files" optional = false
marker = "python_version < \"3.8\"" python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*"
[[package]]
name = "typing-extensions"
version = "3.10.0.0"
description = "Backported and Experimental Type Hints for Python 3.5+"
category = "dev"
optional = false
python-versions = "*"
[[package]]
name = "zipp" name = "zipp"
version = "3.4.1"
description = "Backport of pathlib-compatible object wrapper for zip files"
category = "dev"
optional = false optional = false
python-versions = ">=3.6" python-versions = ">=3.6"
version = "3.3.0"
[package.extras] [package.extras]
docs = ["sphinx", "jaraco.packaging (>=3.2)", "rst.linker (>=1.9)"] docs = ["sphinx", "jaraco.packaging (>=8.2)", "rst.linker (>=1.9)"]
testing = ["pytest (>=3.5,<3.7.3 || >3.7.3)", "pytest-checkdocs (>=1.2.3)", "pytest-flake8", "pytest-cov", "jaraco.test (>=3.2.0)", "jaraco.itertools", "func-timeout", "pytest-black (>=0.3.7)", "pytest-mypy"] testing = ["pytest (>=4.6)", "pytest-checkdocs (>=1.2.3)", "pytest-flake8", "pytest-cov", "pytest-enabler", "jaraco.itertools", "func-timeout", "pytest-black (>=0.3.7)", "pytest-mypy"]
[metadata] [metadata]
content-hash = "7ae1ca698619b46069b373d39e9b71110d4d71c3d9b4b97b7e22f6a80abe47f6" lock-version = "1.1"
python-versions = "^3.6" # Compatible python versions must be declared here python-versions = ">=3.6" # Compatible python versions must be declared here
content-hash = "7ee84c79fcf3f786abecf596c63f654e3b635b34a139b01835b0e503983fdbd5"
[metadata.files] [metadata.files]
atomicwrites = [ atomicwrites = [
@ -291,229 +309,277 @@ atomicwrites = [
{file = "atomicwrites-1.4.0.tar.gz", hash = "sha256:ae70396ad1a434f9c7046fd2dd196fc04b12f9e91ffb859164193be8b6168a7a"}, {file = "atomicwrites-1.4.0.tar.gz", hash = "sha256:ae70396ad1a434f9c7046fd2dd196fc04b12f9e91ffb859164193be8b6168a7a"},
] ]
attrs = [ attrs = [
{file = "attrs-20.2.0-py2.py3-none-any.whl", hash = "sha256:fce7fc47dfc976152e82d53ff92fa0407700c21acd20886a13777a0d20e655dc"}, {file = "attrs-21.2.0-py2.py3-none-any.whl", hash = "sha256:149e90d6d8ac20db7a955ad60cf0e6881a3f20d37096140088356da6c716b0b1"},
{file = "attrs-20.2.0.tar.gz", hash = "sha256:26b54ddbbb9ee1d34d5d3668dd37d6cf74990ab23c828c2888dccdceee395594"}, {file = "attrs-21.2.0.tar.gz", hash = "sha256:ef6aaac3ca6cd92904cdd0d83f629a15f18053ec84e6432106f7a4d04ae4f5fb"},
] ]
cffi = [ cffi = [
{file = "cffi-1.14.3-2-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:3eeeb0405fd145e714f7633a5173318bd88d8bbfc3dd0a5751f8c4f70ae629bc"}, {file = "cffi-1.14.5-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:bb89f306e5da99f4d922728ddcd6f7fcebb3241fc40edebcb7284d7514741991"},
{file = "cffi-1.14.3-2-cp35-cp35m-macosx_10_9_x86_64.whl", hash = "sha256:cb763ceceae04803adcc4e2d80d611ef201c73da32d8f2722e9d0ab0c7f10768"}, {file = "cffi-1.14.5-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:34eff4b97f3d982fb93e2831e6750127d1355a923ebaeeb565407b3d2f8d41a1"},
{file = "cffi-1.14.3-2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:44f60519595eaca110f248e5017363d751b12782a6f2bd6a7041cba275215f5d"}, {file = "cffi-1.14.5-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:99cd03ae7988a93dd00bcd9d0b75e1f6c426063d6f03d2f90b89e29b25b82dfa"},
{file = "cffi-1.14.3-2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c53af463f4a40de78c58b8b2710ade243c81cbca641e34debf3396a9640d6ec1"}, {file = "cffi-1.14.5-cp27-cp27m-win32.whl", hash = "sha256:65fa59693c62cf06e45ddbb822165394a288edce9e276647f0046e1ec26920f3"},
{file = "cffi-1.14.3-2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:33c6cdc071ba5cd6d96769c8969a0531be2d08c2628a0143a10a7dcffa9719ca"}, {file = "cffi-1.14.5-cp27-cp27m-win_amd64.whl", hash = "sha256:51182f8927c5af975fece87b1b369f722c570fe169f9880764b1ee3bca8347b5"},
{file = "cffi-1.14.3-2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c11579638288e53fc94ad60022ff1b67865363e730ee41ad5e6f0a17188b327a"}, {file = "cffi-1.14.5-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:43e0b9d9e2c9e5d152946b9c5fe062c151614b262fda2e7b201204de0b99e482"},
{file = "cffi-1.14.3-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:3cb3e1b9ec43256c4e0f8d2837267a70b0e1ca8c4f456685508ae6106b1f504c"}, {file = "cffi-1.14.5-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:cbde590d4faaa07c72bf979734738f328d239913ba3e043b1e98fe9a39f8b2b6"},
{file = "cffi-1.14.3-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:f0620511387790860b249b9241c2f13c3a80e21a73e0b861a2df24e9d6f56730"}, {file = "cffi-1.14.5-cp35-cp35m-macosx_10_9_x86_64.whl", hash = "sha256:5de7970188bb46b7bf9858eb6890aad302577a5f6f75091fd7cdd3ef13ef3045"},
{file = "cffi-1.14.3-cp27-cp27m-win32.whl", hash = "sha256:005f2bfe11b6745d726dbb07ace4d53f057de66e336ff92d61b8c7e9c8f4777d"}, {file = "cffi-1.14.5-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:a465da611f6fa124963b91bf432d960a555563efe4ed1cc403ba5077b15370aa"},
{file = "cffi-1.14.3-cp27-cp27m-win_amd64.whl", hash = "sha256:2f9674623ca39c9ebe38afa3da402e9326c245f0f5ceff0623dccdac15023e05"}, {file = "cffi-1.14.5-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:d42b11d692e11b6634f7613ad8df5d6d5f8875f5d48939520d351007b3c13406"},
{file = "cffi-1.14.3-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:09e96138280241bd355cd585148dec04dbbedb4f46128f340d696eaafc82dd7b"}, {file = "cffi-1.14.5-cp35-cp35m-win32.whl", hash = "sha256:72d8d3ef52c208ee1c7b2e341f7d71c6fd3157138abf1a95166e6165dd5d4369"},
{file = "cffi-1.14.3-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:3363e77a6176afb8823b6e06db78c46dbc4c7813b00a41300a4873b6ba63b171"}, {file = "cffi-1.14.5-cp35-cp35m-win_amd64.whl", hash = "sha256:29314480e958fd8aab22e4a58b355b629c59bf5f2ac2492b61e3dc06d8c7a315"},
{file = "cffi-1.14.3-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:0ef488305fdce2580c8b2708f22d7785ae222d9825d3094ab073e22e93dfe51f"}, {file = "cffi-1.14.5-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:3d3dd4c9e559eb172ecf00a2a7517e97d1e96de2a5e610bd9b68cea3925b4892"},
{file = "cffi-1.14.3-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:0b1ad452cc824665ddc682400b62c9e4f5b64736a2ba99110712fdee5f2505c4"}, {file = "cffi-1.14.5-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:48e1c69bbacfc3d932221851b39d49e81567a4d4aac3b21258d9c24578280058"},
{file = "cffi-1.14.3-cp35-cp35m-win32.whl", hash = "sha256:85ba797e1de5b48aa5a8427b6ba62cf69607c18c5d4eb747604b7302f1ec382d"}, {file = "cffi-1.14.5-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:69e395c24fc60aad6bb4fa7e583698ea6cc684648e1ffb7fe85e3c1ca131a7d5"},
{file = "cffi-1.14.3-cp35-cp35m-win_amd64.whl", hash = "sha256:e66399cf0fc07de4dce4f588fc25bfe84a6d1285cc544e67987d22663393926d"}, {file = "cffi-1.14.5-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:9e93e79c2551ff263400e1e4be085a1210e12073a31c2011dbbda14bda0c6132"},
{file = "cffi-1.14.3-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:15f351bed09897fbda218e4db5a3d5c06328862f6198d4fb385f3e14e19decb3"}, {file = "cffi-1.14.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:24ec4ff2c5c0c8f9c6b87d5bb53555bf267e1e6f70e52e5a9740d32861d36b6f"},
{file = "cffi-1.14.3-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:4d7c26bfc1ea9f92084a1d75e11999e97b62d63128bcc90c3624d07813c52808"}, {file = "cffi-1.14.5-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3c3f39fa737542161d8b0d680df2ec249334cd70a8f420f71c9304bd83c3cbed"},
{file = "cffi-1.14.3-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:23e5d2040367322824605bc29ae8ee9175200b92cb5483ac7d466927a9b3d537"}, {file = "cffi-1.14.5-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:681d07b0d1e3c462dd15585ef5e33cb021321588bebd910124ef4f4fb71aef55"},
{file = "cffi-1.14.3-cp36-cp36m-win32.whl", hash = "sha256:a624fae282e81ad2e4871bdb767e2c914d0539708c0f078b5b355258293c98b0"}, {file = "cffi-1.14.5-cp36-cp36m-win32.whl", hash = "sha256:58e3f59d583d413809d60779492342801d6e82fefb89c86a38e040c16883be53"},
{file = "cffi-1.14.3-cp36-cp36m-win_amd64.whl", hash = "sha256:de31b5164d44ef4943db155b3e8e17929707cac1e5bd2f363e67a56e3af4af6e"}, {file = "cffi-1.14.5-cp36-cp36m-win_amd64.whl", hash = "sha256:005a36f41773e148deac64b08f233873a4d0c18b053d37da83f6af4d9087b813"},
{file = "cffi-1.14.3-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:f92cdecb618e5fa4658aeb97d5eb3d2f47aa94ac6477c6daf0f306c5a3b9e6b1"}, {file = "cffi-1.14.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:2894f2df484ff56d717bead0a5c2abb6b9d2bf26d6960c4604d5c48bbc30ee73"},
{file = "cffi-1.14.3-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:22399ff4870fb4c7ef19fff6eeb20a8bbf15571913c181c78cb361024d574579"}, {file = "cffi-1.14.5-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:0857f0ae312d855239a55c81ef453ee8fd24136eaba8e87a2eceba644c0d4c06"},
{file = "cffi-1.14.3-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:f4eae045e6ab2bb54ca279733fe4eb85f1effda392666308250714e01907f394"}, {file = "cffi-1.14.5-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:cd2868886d547469123fadc46eac7ea5253ea7fcb139f12e1dfc2bbd406427d1"},
{file = "cffi-1.14.3-cp37-cp37m-win32.whl", hash = "sha256:b0358e6fefc74a16f745afa366acc89f979040e0cbc4eec55ab26ad1f6a9bfbc"}, {file = "cffi-1.14.5-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:35f27e6eb43380fa080dccf676dece30bef72e4a67617ffda586641cd4508d49"},
{file = "cffi-1.14.3-cp37-cp37m-win_amd64.whl", hash = "sha256:6642f15ad963b5092d65aed022d033c77763515fdc07095208f15d3563003869"}, {file = "cffi-1.14.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:06d7cd1abac2ffd92e65c0609661866709b4b2d82dd15f611e602b9b188b0b69"},
{file = "cffi-1.14.3-cp38-cp38-manylinux1_i686.whl", hash = "sha256:2791f68edc5749024b4722500e86303a10d342527e1e3bcac47f35fbd25b764e"}, {file = "cffi-1.14.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0f861a89e0043afec2a51fd177a567005847973be86f709bbb044d7f42fc4e05"},
{file = "cffi-1.14.3-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:529c4ed2e10437c205f38f3691a68be66c39197d01062618c55f74294a4a4828"}, {file = "cffi-1.14.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cc5a8e069b9ebfa22e26d0e6b97d6f9781302fe7f4f2b8776c3e1daea35f1adc"},
{file = "cffi-1.14.3-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:8f0f1e499e4000c4c347a124fa6a27d37608ced4fe9f7d45070563b7c4c370c9"}, {file = "cffi-1.14.5-cp37-cp37m-win32.whl", hash = "sha256:9ff227395193126d82e60319a673a037d5de84633f11279e336f9c0f189ecc62"},
{file = "cffi-1.14.3-cp38-cp38-win32.whl", hash = "sha256:3b8eaf915ddc0709779889c472e553f0d3e8b7bdf62dab764c8921b09bf94522"}, {file = "cffi-1.14.5-cp37-cp37m-win_amd64.whl", hash = "sha256:9cf8022fb8d07a97c178b02327b284521c7708d7c71a9c9c355c178ac4bbd3d4"},
{file = "cffi-1.14.3-cp38-cp38-win_amd64.whl", hash = "sha256:bbd2f4dfee1079f76943767fce837ade3087b578aeb9f69aec7857d5bf25db15"}, {file = "cffi-1.14.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8b198cec6c72df5289c05b05b8b0969819783f9418e0409865dac47288d2a053"},
{file = "cffi-1.14.3-cp39-cp39-manylinux1_i686.whl", hash = "sha256:cc75f58cdaf043fe6a7a6c04b3b5a0e694c6a9e24050967747251fb80d7bce0d"}, {file = "cffi-1.14.5-cp38-cp38-manylinux1_i686.whl", hash = "sha256:ad17025d226ee5beec591b52800c11680fca3df50b8b29fe51d882576e039ee0"},
{file = "cffi-1.14.3-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:bf39a9e19ce7298f1bd6a9758fa99707e9e5b1ebe5e90f2c3913a47bc548747c"}, {file = "cffi-1.14.5-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:6c97d7350133666fbb5cf4abdc1178c812cb205dc6f41d174a7b0f18fb93337e"},
{file = "cffi-1.14.3-cp39-cp39-win32.whl", hash = "sha256:d80998ed59176e8cba74028762fbd9b9153b9afc71ea118e63bbf5d4d0f9552b"}, {file = "cffi-1.14.5-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:8ae6299f6c68de06f136f1f9e69458eae58f1dacf10af5c17353eae03aa0d827"},
{file = "cffi-1.14.3-cp39-cp39-win_amd64.whl", hash = "sha256:c150eaa3dadbb2b5339675b88d4573c1be3cb6f2c33a6c83387e10cc0bf05bd3"}, {file = "cffi-1.14.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:04c468b622ed31d408fea2346bec5bbffba2cc44226302a0de1ade9f5ea3d373"},
{file = "cffi-1.14.3.tar.gz", hash = "sha256:f92f789e4f9241cd262ad7a555ca2c648a98178a953af117ef7fad46aa1d5591"}, {file = "cffi-1.14.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:06db6321b7a68b2bd6df96d08a5adadc1fa0e8f419226e25b2a5fbf6ccc7350f"},
{file = "cffi-1.14.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:293e7ea41280cb28c6fcaaa0b1aa1f533b8ce060b9e701d78511e1e6c4a1de76"},
{file = "cffi-1.14.5-cp38-cp38-win32.whl", hash = "sha256:b85eb46a81787c50650f2392b9b4ef23e1f126313b9e0e9013b35c15e4288e2e"},
{file = "cffi-1.14.5-cp38-cp38-win_amd64.whl", hash = "sha256:1f436816fc868b098b0d63b8920de7d208c90a67212546d02f84fe78a9c26396"},
{file = "cffi-1.14.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1071534bbbf8cbb31b498d5d9db0f274f2f7a865adca4ae429e147ba40f73dea"},
{file = "cffi-1.14.5-cp39-cp39-manylinux1_i686.whl", hash = "sha256:9de2e279153a443c656f2defd67769e6d1e4163952b3c622dcea5b08a6405322"},
{file = "cffi-1.14.5-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:6e4714cc64f474e4d6e37cfff31a814b509a35cb17de4fb1999907575684479c"},
{file = "cffi-1.14.5-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:158d0d15119b4b7ff6b926536763dc0714313aa59e320ddf787502c70c4d4bee"},
{file = "cffi-1.14.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1bf1ac1984eaa7675ca8d5745a8cb87ef7abecb5592178406e55858d411eadc0"},
{file = "cffi-1.14.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:df5052c5d867c1ea0b311fb7c3cd28b19df469c056f7fdcfe88c7473aa63e333"},
{file = "cffi-1.14.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:24a570cd11895b60829e941f2613a4f79df1a27344cbbb82164ef2e0116f09c7"},
{file = "cffi-1.14.5-cp39-cp39-win32.whl", hash = "sha256:afb29c1ba2e5a3736f1c301d9d0abe3ec8b86957d04ddfa9d7a6a42b9367e396"},
{file = "cffi-1.14.5-cp39-cp39-win_amd64.whl", hash = "sha256:f2d45f97ab6bb54753eab54fffe75aaf3de4ff2341c9daee1987ee1837636f1d"},
{file = "cffi-1.14.5.tar.gz", hash = "sha256:fd78e5fee591709f32ef6edb9a015b4aa1a5022598e36227500c8f4e02328d9c"},
] ]
cloudpickle = [ cloudpickle = [
{file = "cloudpickle-1.6.0-py3-none-any.whl", hash = "sha256:3a32d0eb0bc6f4d0c57fbc4f3e3780f7a81e6fee0fa935072884d58ae8e1cc7c"}, {file = "cloudpickle-1.6.0-py3-none-any.whl", hash = "sha256:3a32d0eb0bc6f4d0c57fbc4f3e3780f7a81e6fee0fa935072884d58ae8e1cc7c"},
{file = "cloudpickle-1.6.0.tar.gz", hash = "sha256:9bc994f9e9447593bd0a45371f0e7ac7333710fcf64a4eb9834bf149f4ef2f32"}, {file = "cloudpickle-1.6.0.tar.gz", hash = "sha256:9bc994f9e9447593bd0a45371f0e7ac7333710fcf64a4eb9834bf149f4ef2f32"},
] ]
colorama = [ colorama = [
{file = "colorama-0.4.3-py2.py3-none-any.whl", hash = "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff"}, {file = "colorama-0.4.4-py2.py3-none-any.whl", hash = "sha256:9f47eda37229f68eee03b24b9748937c7dc3868f906e8ba69fbcbdd3bc5dc3e2"},
{file = "colorama-0.4.3.tar.gz", hash = "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1"}, {file = "colorama-0.4.4.tar.gz", hash = "sha256:5941b2b48a20143d2267e95b1c2a7603ce057ee39fd88e7329b0c292aa16869b"},
] ]
cython = [ cython = [
{file = "Cython-0.29.21-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:c541b2b49c6638f2b5beb9316726db84a8d1c132bf31b942dae1f9c7f6ad3b92"}, {file = "Cython-0.29.23-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:ff885f18d169759b57f116d3956e45cd2b9cba989fde348bba091544c668dc11"},
{file = "Cython-0.29.21-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:b8d8497091c1dc8705d1575c71e908a93b1f127a174b2d472020f3d84263ac28"}, {file = "Cython-0.29.23-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:3b29224eb62309a10819d923dc6262f769e4f3facfee3cd06372c355e5b38b33"},
{file = "Cython-0.29.21-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:695a6bcaf9e12b1e471dfce96bbecf22a1487adc2ac6106b15960a2b51b97f5d"}, {file = "Cython-0.29.23-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:355a6e768d91e21fbf477b61881bab64b7a2da386a166898997bccefd532cf5d"},
{file = "Cython-0.29.21-cp27-cp27m-win32.whl", hash = "sha256:171b9f70ceafcec5852089d0f9c1e75b0d554f46c882cd4e2e4acaba9bd7d148"}, {file = "Cython-0.29.23-cp27-cp27m-win32.whl", hash = "sha256:2af52d312e96b38ded38b34d06e22685c226b1b0e58278bd27209f5d2385d115"},
{file = "Cython-0.29.21-cp27-cp27m-win_amd64.whl", hash = "sha256:539e59949aab4955c143a468810123bf22d3e8556421e1ce2531ed4893914ca0"}, {file = "Cython-0.29.23-cp27-cp27m-win_amd64.whl", hash = "sha256:519fccf526d26b377e1db22f22aa44889b28bc5833ec106588cb13557e8ba2da"},
{file = "Cython-0.29.21-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:e93acd1f603a0c1786e0841f066ae7cef014cf4750e3cd06fd03cfdf46361419"}, {file = "Cython-0.29.23-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:625a16103770fd92b487b701fb0c07e5790b080f40fa11ce572a2d56d9e9fcca"},
{file = "Cython-0.29.21-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:2922e3031ba9ebbe7cb9200b585cc33b71d66023d78450dcb883f824f4969371"}, {file = "Cython-0.29.23-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:7b7a766726d207d7cd57aff0fcb4b35ce042d3cc88a421fcdb45eeb61a5b9d12"},
{file = "Cython-0.29.21-cp34-cp34m-manylinux1_i686.whl", hash = "sha256:497841897942f734b0abc2dead2d4009795ee992267a70a23485fd0e937edc0b"}, {file = "Cython-0.29.23-cp34-cp34m-win32.whl", hash = "sha256:474c1a29ab43e29d990df279e2cf6aa96baa9208f5cd4bc76ac87ffcdf1e2945"},
{file = "Cython-0.29.21-cp34-cp34m-manylinux1_x86_64.whl", hash = "sha256:0ac10bf476476a9f7ef61ec6e44c280ef434473124ad31d3132b720f7b0e8d2a"}, {file = "Cython-0.29.23-cp34-cp34m-win_amd64.whl", hash = "sha256:f4aca6bffb1c1c3c4ada3347d0b162a699c18a66e097ee08b63b3a35118fdfcc"},
{file = "Cython-0.29.21-cp34-cp34m-win32.whl", hash = "sha256:31c71a615f38401b0dc1f2a5a9a6c421ffd8908c4cd5bbedc4014c1b876488e8"}, {file = "Cython-0.29.23-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:58dc06871bfdb0592542d779714fe9f918e11ba20ac07757dd63b198bdc704fe"},
{file = "Cython-0.29.21-cp34-cp34m-win_amd64.whl", hash = "sha256:c4b78356074fcaac04ecb4de289f11d506e438859877670992ece11f9c90f37b"}, {file = "Cython-0.29.23-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:2a3bbce689a2fddb85aa66712d93875c99bf7f64ac82b1d149ecce522a7a4e0c"},
{file = "Cython-0.29.21-cp35-cp35m-macosx_10_6_intel.whl", hash = "sha256:b2f9172e4d6358f33ecce6a4339b5960f9f83eab67ea244baa812737793826b7"}, {file = "Cython-0.29.23-cp35-cp35m-win32.whl", hash = "sha256:3ef530f975e3a760e7282fce2a25f900fa63f96d17321b4aa5f5542eb9859cdf"},
{file = "Cython-0.29.21-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:856c7fb31d247ce713d60116375e1f8153d0291ab5e92cca7d8833a524ba9991"}, {file = "Cython-0.29.23-cp35-cp35m-win_amd64.whl", hash = "sha256:ef21c51350462160456eb71df31b0869e5141e940f22c61c358bdb6e3ebc3388"},
{file = "Cython-0.29.21-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:715294cd2246b39a8edca464a8366eb635f17213e4a6b9e74e52d8b877a8cb63"}, {file = "Cython-0.29.23-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:20402ef316393168909926ab21848aa6e08e39bed5003b657139774e66166cd0"},
{file = "Cython-0.29.21-cp35-cp35m-win32.whl", hash = "sha256:23f3a00b843a19de8bb4468b087db5b413a903213f67188729782488d67040e0"}, {file = "Cython-0.29.23-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:4858043ac5f96a8f0277cf63760bb39b9521c1f897678cf1d22423f3e758f4ed"},
{file = "Cython-0.29.21-cp35-cp35m-win_amd64.whl", hash = "sha256:ccb77faeaad99e99c6c444d04862c6cf604204fe0a07d4c8f9cbf2c9012d7d5a"}, {file = "Cython-0.29.23-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:4d7c3b0882d8757c601eaf288fc0d321d5c7ac6c3afb8c42eddf9325a3419cf5"},
{file = "Cython-0.29.21-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:e272ed97d20b026f4f25a012b25d7d7672a60e4f72b9ca385239d693cd91b2d5"}, {file = "Cython-0.29.23-cp36-cp36m-win32.whl", hash = "sha256:37ff66039e3d138ec968ee1d1e12441fa5fb4e6a9c5458bc3c3a232f01be4a7d"},
{file = "Cython-0.29.21-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:8c6e25e9cc4961bb2abb1777c6fa9d0fa2d9b014beb3276cebe69996ff162b78"}, {file = "Cython-0.29.23-cp36-cp36m-win_amd64.whl", hash = "sha256:5be3ae3189cf7d0e9bbeafb854496dc7030c6f6a5602d809435fab8223543a41"},
{file = "Cython-0.29.21-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:57ead89128dee9609119c93d3926c7a2add451453063147900408a50144598c6"}, {file = "Cython-0.29.23-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b0699f0dc90181f2458fdb8170455e7798a309e18f41379eda7a2dc8c7aadee0"},
{file = "Cython-0.29.21-cp36-cp36m-win32.whl", hash = "sha256:0e25c209c75df8785480dcef85db3d36c165dbc0f4c503168e8763eb735704f2"}, {file = "Cython-0.29.23-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:41cd0dd2ff5d78466e73409db509887a84449b400074d4f217980cedbb18e4be"},
{file = "Cython-0.29.21-cp36-cp36m-win_amd64.whl", hash = "sha256:a0674f246ad5e1571ef29d4c5ec1d6ecabe9e6c424ad0d6fee46b914d5d24d69"}, {file = "Cython-0.29.23-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:aa3bb0928fb2aa3a8828801eb8b29af2261c199f805ae835467489e2bdd00372"},
{file = "Cython-0.29.21-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5da187bebe38030325e1c0b5b8a804d489410be2d384c0ef3ba39493c67eb51e"}, {file = "Cython-0.29.23-cp37-cp37m-win32.whl", hash = "sha256:20cb50d9fede8029bdb50875458f07a27f909289aeed4cdb9c19544dd9a9bc45"},
{file = "Cython-0.29.21-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:9ce5e5209f8406ffc2b058b1293cce7a954911bb7991e623564d489197c9ba30"}, {file = "Cython-0.29.23-cp37-cp37m-win_amd64.whl", hash = "sha256:c4b82461edbbcf90f19b319006345b77474a2d7514e1476d49a14bbd55d6b797"},
{file = "Cython-0.29.21-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:5e545a48f919e40079b0efe7b0e081c74b96f9ef25b9c1ff4cdbd95764426b58"}, {file = "Cython-0.29.23-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:794e3df0b57e16bce7583ac909126f4cb381fe566adadb20484d89095855eedb"},
{file = "Cython-0.29.21-cp37-cp37m-win32.whl", hash = "sha256:c8435959321cf8aec867bbad54b83b7fb8343204b530d85d9ea7a1f5329d5ac2"}, {file = "Cython-0.29.23-cp38-cp38-manylinux1_i686.whl", hash = "sha256:0c4b9f7e3aa004cf3f364e3e772f55fec5740485bafea99d1f13bdc9bbd8a545"},
{file = "Cython-0.29.21-cp37-cp37m-win_amd64.whl", hash = "sha256:540b3bee0711aac2e99bda4fa0a46dbcd8c74941666bfc1ef9236b1a64eeffd9"}, {file = "Cython-0.29.23-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:ceccc03b633113ede1f14ad914a6db5c278ce108c8ddb308a5c01c1567d8a02a"},
{file = "Cython-0.29.21-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:93f5fed1c9445fb7afe20450cdaf94b0e0356d47cc75008105be89c6a2e417b1"}, {file = "Cython-0.29.23-cp38-cp38-win32.whl", hash = "sha256:4b0bcf2e06a9063fc78c3243ed4003228375d532ef13b9e5d7183be8f0a52cf5"},
{file = "Cython-0.29.21-cp38-cp38-manylinux1_i686.whl", hash = "sha256:9207fdedc7e789a3dcaca628176b80c82fbed9ae0997210738cbb12536a56699"}, {file = "Cython-0.29.23-cp38-cp38-win_amd64.whl", hash = "sha256:5a6792153b728a0240e55bbb5b643f4f7e45c76319e03abf15bf367471ea1d1a"},
{file = "Cython-0.29.21-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:603b9f1b8e93e8b494d3e89320c410679e21018e48b6cbc77280f5db71f17dc0"}, {file = "Cython-0.29.23-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a8eed9c82e8fe07b8a8ffbd36018871a17458903fc25c9d015f37b54513a3efd"},
{file = "Cython-0.29.21-cp38-cp38-win32.whl", hash = "sha256:473df5d5e400444a36ed81c6596f56a5b52a3481312d0a48d68b777790f730ae"}, {file = "Cython-0.29.23-cp39-cp39-manylinux1_i686.whl", hash = "sha256:266459c7e48fe3c6c492b297e4033e42d4c6863cc1a1ff7cc4034949fc574fa6"},
{file = "Cython-0.29.21-cp38-cp38-win_amd64.whl", hash = "sha256:b8a8a31b9e8860634adbca30fea1d0c7f08e208b3d7611f3e580e5f20992e5d7"}, {file = "Cython-0.29.23-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:4b6824b58d4373224fc76ee8bee6b35c2d17c91a1ed0fa67b88440f63daebe50"},
{file = "Cython-0.29.21-py2.py3-none-any.whl", hash = "sha256:5c4276fdcbccdf1e3c1756c7aeb8395e9a36874fa4d30860e7694f43d325ae13"}, {file = "Cython-0.29.23-cp39-cp39-win32.whl", hash = "sha256:7d6a33c8a11f05f698e215bfdb837f32c27f63c20f3af863557ed91c748dc2be"},
{file = "Cython-0.29.21.tar.gz", hash = "sha256:e57acb89bd55943c8d8bf813763d20b9099cc7165c0f16b707631a7654be9cad"}, {file = "Cython-0.29.23-cp39-cp39-win_amd64.whl", hash = "sha256:2365f3b5e6451b6bc6dcd262230656f4ade1d862ec2f6c22154deebef37c08b6"},
{file = "Cython-0.29.23-py2.py3-none-any.whl", hash = "sha256:282263628c5d601b313d5920f7b6d7e08c7fedbddacd080c4858aa04d86b6b4b"},
{file = "Cython-0.29.23.tar.gz", hash = "sha256:6a0d31452f0245daacb14c979c77e093eb1a546c760816b5eed0047686baad8e"},
] ]
fasteners = [ fasteners = [
{file = "fasteners-0.15-py2.py3-none-any.whl", hash = "sha256:007e4d2b2d4a10093f67e932e5166722d2eab83b77724156e92ad013c6226574"}, {file = "fasteners-0.16-py2.py3-none-any.whl", hash = "sha256:74b6847e0a6bb3b56c8511af8e24c40e4cf7a774dfff5b251c260ed338096a4b"},
{file = "fasteners-0.15.tar.gz", hash = "sha256:3a176da6b70df9bb88498e1a18a9e4a8579ed5b9141207762368a1017bf8f5ef"}, {file = "fasteners-0.16.tar.gz", hash = "sha256:c995d8c26b017c5d6a6de9ad29a0f9cdd57de61ae1113d28fac26622b06a0933"},
]
future = [
{file = "future-0.18.2.tar.gz", hash = "sha256:b1bead90b70cf6ec3f0710ae53a525360fa360d306a86583adc6bf83a4db537d"},
] ]
glfw = [ glfw = [
{file = "glfw-2.0.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-macosx_10_6_intel.whl", hash = "sha256:76cddb57ebfe36812cca3d75267f79e94eee449f7a001429cd67923af0f4740d"}, {file = "glfw-2.1.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-macosx_10_6_intel.whl", hash = "sha256:5499f1daa773f6464eb16ac4c8f64c3533408d73863987c4b9131d0a20648f1f"},
{file = "glfw-2.0.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-manylinux2010_i686.whl", hash = "sha256:c60c375257b95af14aa3561b420879eb5d313a55195116337be4a345604ec668"}, {file = "glfw-2.1.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-manylinux2010_i686.whl", hash = "sha256:b0c440534224a371becafb96019f5f4340f8f65d5c2bcbfad537c3f40ca8e307"},
{file = "glfw-2.0.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-manylinux2010_x86_64.whl", hash = "sha256:ef4f4c1a24d9955244563db0b6da46d8fafb457a32f295a029087aafbfcdc898"}, {file = "glfw-2.1.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-manylinux2010_x86_64.whl", hash = "sha256:12953e121ede2e5980036cd1cc667fa7918b67799b903699616439e3deab6803"},
{file = "glfw-2.0.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-manylinux2014_x86_64.whl", hash = "sha256:92d91a60f5a93ce7a4cd124ad73fd2a7b13dc17fced7608f3f9d8202ca61e495"}, {file = "glfw-2.1.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-manylinux2014_x86_64.whl", hash = "sha256:92e95fcf2088c371ce7411e8f34598cccbcb46c88fc7d91a5f19d15b94e961c1"},
{file = "glfw-2.0.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-win32.whl", hash = "sha256:ee7ceacbb8688f0f5c05fa7f88c1071698ef896a192a8acc0f7561e8949f8e85"}, {file = "glfw-2.1.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-win32.whl", hash = "sha256:83db9be8291a3e7ae121a443f874a3e3f3ae75c3e52e66f231db1818553811c4"},
{file = "glfw-2.0.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-win_amd64.whl", hash = "sha256:7f40ee7e34f41e63ef775b46b5d199a312c971f97a0c92d5de341e1b45b1bf00"}, {file = "glfw-2.1.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-win_amd64.whl", hash = "sha256:8f40d12e9c7599c4d10b74e74ef79c8c7175d966a7fc35e6210b951004e48cf7"},
{file = "glfw-2.0.0.tar.gz", hash = "sha256:7a330b0abd4f5367510883f11e4f2b31c2d0dcc96cac9669107e1bd3426e98ce"}, {file = "glfw-2.1.0.tar.gz", hash = "sha256:464156ef108801b03f152553622f46b4b2acb080bdab91398dd22a84dfd379b3"},
] ]
gym = [ gym = [
{file = "gym-0.17.3.tar.gz", hash = "sha256:96a7dd4e9cdb39e30c7a79e5773570fd9408f7fdb58c714c293cfbb314818eb6"}, {file = "gym-0.18.3.tar.gz", hash = "sha256:81a3e3fbf7fcf57c8cf98f7e22d1bdd5815f3824d9c148a7eb42420d3d642967"},
] ]
imageio = [ imageio = [
{file = "imageio-2.9.0-py3-none-any.whl", hash = "sha256:3604d751f03002e8e0e7650aa71d8d9148144a87daf17cb1f3228e80747f2e6b"}, {file = "imageio-2.9.0-py3-none-any.whl", hash = "sha256:3604d751f03002e8e0e7650aa71d8d9148144a87daf17cb1f3228e80747f2e6b"},
{file = "imageio-2.9.0.tar.gz", hash = "sha256:52ddbaeca2dccf53ba2d6dec5676ca7bc3b2403ef8b37f7da78b7654bb3e10f0"}, {file = "imageio-2.9.0.tar.gz", hash = "sha256:52ddbaeca2dccf53ba2d6dec5676ca7bc3b2403ef8b37f7da78b7654bb3e10f0"},
] ]
importlib-metadata = [ importlib-metadata = [
{file = "importlib_metadata-2.0.0-py2.py3-none-any.whl", hash = "sha256:cefa1a2f919b866c5beb7c9f7b0ebb4061f30a8a9bf16d609b000e2dfaceb9c3"}, {file = "importlib_metadata-4.4.0-py3-none-any.whl", hash = "sha256:960d52ba7c21377c990412aca380bf3642d734c2eaab78a2c39319f67c6a5786"},
{file = "importlib_metadata-2.0.0.tar.gz", hash = "sha256:77a540690e24b0305878c37ffd421785a6f7e53c8b5720d211b211de8d0e95da"}, {file = "importlib_metadata-4.4.0.tar.gz", hash = "sha256:e592faad8de1bda9fe920cf41e15261e7131bcf266c30306eec00e8e225c1dd5"},
] ]
monotonic = [ iniconfig = [
{file = "monotonic-1.5-py2.py3-none-any.whl", hash = "sha256:552a91f381532e33cbd07c6a2655a21908088962bb8fa7239ecbcc6ad1140cc7"}, {file = "iniconfig-1.1.1-py2.py3-none-any.whl", hash = "sha256:011e24c64b7f47f6ebd835bb12a743f2fbe9a26d4cecaa7f53bc4f35ee9da8b3"},
{file = "monotonic-1.5.tar.gz", hash = "sha256:23953d55076df038541e648a53676fb24980f7a1be290cdda21300b3bc21dfb0"}, {file = "iniconfig-1.1.1.tar.gz", hash = "sha256:bc3af051d7d14b2ee5ef9969666def0cd1a000e121eaea580d4a313df4b37f32"},
]
more-itertools = [
{file = "more-itertools-8.5.0.tar.gz", hash = "sha256:6f83822ae94818eae2612063a5101a7311e68ae8002005b5e05f03fd74a86a20"},
{file = "more_itertools-8.5.0-py3-none-any.whl", hash = "sha256:9b30f12df9393f0d28af9210ff8efe48d10c94f73e5daf886f10c4b0b0b4f03c"},
] ]
mujoco-py = [ mujoco-py = [
{file = "mujoco-py-2.0.2.13.tar.gz", hash = "sha256:d6ae66276b565af9063597fda70683a89c7356290f5ac3961b794ee90ec50eea"}, {file = "mujoco-py-2.0.2.13.tar.gz", hash = "sha256:d6ae66276b565af9063597fda70683a89c7356290f5ac3961b794ee90ec50eea"},
] ]
numpy = [ numpy = [
{file = "numpy-1.19.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:b594f76771bc7fc8a044c5ba303427ee67c17a09b36e1fa32bde82f5c419d17a"}, {file = "numpy-1.19.5-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:cc6bd4fd593cb261332568485e20a0712883cf631f6f5e8e86a52caa8b2b50ff"},
{file = "numpy-1.19.2-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:e6ddbdc5113628f15de7e4911c02aed74a4ccff531842c583e5032f6e5a179bd"}, {file = "numpy-1.19.5-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:aeb9ed923be74e659984e321f609b9ba54a48354bfd168d21a2b072ed1e833ea"},
{file = "numpy-1.19.2-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:3733640466733441295b0d6d3dcbf8e1ffa7e897d4d82903169529fd3386919a"}, {file = "numpy-1.19.5-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:8b5e972b43c8fc27d56550b4120fe6257fdc15f9301914380b27f74856299fea"},
{file = "numpy-1.19.2-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:4339741994c775396e1a274dba3609c69ab0f16056c1077f18979bec2a2c2e6e"}, {file = "numpy-1.19.5-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:43d4c81d5ffdff6bae58d66a3cd7f54a7acd9a0e7b18d97abb255defc09e3140"},
{file = "numpy-1.19.2-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:7c6646314291d8f5ea900a7ea9c4261f834b5b62159ba2abe3836f4fa6705526"}, {file = "numpy-1.19.5-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:a4646724fba402aa7504cd48b4b50e783296b5e10a524c7a6da62e4a8ac9698d"},
{file = "numpy-1.19.2-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:7118f0a9f2f617f921ec7d278d981244ba83c85eea197be7c5a4f84af80a9c3c"}, {file = "numpy-1.19.5-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:2e55195bc1c6b705bfd8ad6f288b38b11b1af32f3c8289d6c50d47f950c12e76"},
{file = "numpy-1.19.2-cp36-cp36m-win32.whl", hash = "sha256:9a3001248b9231ed73894c773142658bab914645261275f675d86c290c37f66d"}, {file = "numpy-1.19.5-cp36-cp36m-win32.whl", hash = "sha256:39b70c19ec771805081578cc936bbe95336798b7edf4732ed102e7a43ec5c07a"},
{file = "numpy-1.19.2-cp36-cp36m-win_amd64.whl", hash = "sha256:967c92435f0b3ba37a4257c48b8715b76741410467e2bdb1097e8391fccfae15"}, {file = "numpy-1.19.5-cp36-cp36m-win_amd64.whl", hash = "sha256:dbd18bcf4889b720ba13a27ec2f2aac1981bd41203b3a3b27ba7a33f88ae4827"},
{file = "numpy-1.19.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:d526fa58ae4aead839161535d59ea9565863bb0b0bdb3cc63214613fb16aced4"}, {file = "numpy-1.19.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:603aa0706be710eea8884af807b1b3bc9fb2e49b9f4da439e76000f3b3c6ff0f"},
{file = "numpy-1.19.2-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:eb25c381d168daf351147713f49c626030dcff7a393d5caa62515d415a6071d8"}, {file = "numpy-1.19.5-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:cae865b1cae1ec2663d8ea56ef6ff185bad091a5e33ebbadd98de2cfa3fa668f"},
{file = "numpy-1.19.2-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:62139af94728d22350a571b7c82795b9d59be77fc162414ada6c8b6a10ef5d02"}, {file = "numpy-1.19.5-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:36674959eed6957e61f11c912f71e78857a8d0604171dfd9ce9ad5cbf41c511c"},
{file = "numpy-1.19.2-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:0c66da1d202c52051625e55a249da35b31f65a81cb56e4c69af0dfb8fb0125bf"}, {file = "numpy-1.19.5-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:06fab248a088e439402141ea04f0fffb203723148f6ee791e9c75b3e9e82f080"},
{file = "numpy-1.19.2-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:2117536e968abb7357d34d754e3733b0d7113d4c9f1d921f21a3d96dec5ff716"}, {file = "numpy-1.19.5-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:6149a185cece5ee78d1d196938b2a8f9d09f5a5ebfbba66969302a778d5ddd1d"},
{file = "numpy-1.19.2-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:54045b198aebf41bf6bf4088012777c1d11703bf74461d70cd350c0af2182e45"}, {file = "numpy-1.19.5-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:50a4a0ad0111cc1b71fa32dedd05fa239f7fb5a43a40663269bb5dc7877cfd28"},
{file = "numpy-1.19.2-cp37-cp37m-win32.whl", hash = "sha256:aba1d5daf1144b956bc87ffb87966791f5e9f3e1f6fab3d7f581db1f5b598f7a"}, {file = "numpy-1.19.5-cp37-cp37m-win32.whl", hash = "sha256:d051ec1c64b85ecc69531e1137bb9751c6830772ee5c1c426dbcfe98ef5788d7"},
{file = "numpy-1.19.2-cp37-cp37m-win_amd64.whl", hash = "sha256:addaa551b298052c16885fc70408d3848d4e2e7352de4e7a1e13e691abc734c1"}, {file = "numpy-1.19.5-cp37-cp37m-win_amd64.whl", hash = "sha256:a12ff4c8ddfee61f90a1633a4c4afd3f7bcb32b11c52026c92a12e1325922d0d"},
{file = "numpy-1.19.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:58d66a6b3b55178a1f8a5fe98df26ace76260a70de694d99577ddeab7eaa9a9d"}, {file = "numpy-1.19.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cf2402002d3d9f91c8b01e66fbb436a4ed01c6498fffed0e4c7566da1d40ee1e"},
{file = "numpy-1.19.2-cp38-cp38-manylinux1_i686.whl", hash = "sha256:59f3d687faea7a4f7f93bd9665e5b102f32f3fa28514f15b126f099b7997203d"}, {file = "numpy-1.19.5-cp38-cp38-manylinux1_i686.whl", hash = "sha256:1ded4fce9cfaaf24e7a0ab51b7a87be9038ea1ace7f34b841fe3b6894c721d1c"},
{file = "numpy-1.19.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:cebd4f4e64cfe87f2039e4725781f6326a61f095bc77b3716502bed812b385a9"}, {file = "numpy-1.19.5-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:012426a41bc9ab63bb158635aecccc7610e3eff5d31d1eb43bc099debc979d94"},
{file = "numpy-1.19.2-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:c35a01777f81e7333bcf276b605f39c872e28295441c265cd0c860f4b40148c1"}, {file = "numpy-1.19.5-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:759e4095edc3c1b3ac031f34d9459fa781777a93ccc633a472a5468587a190ff"},
{file = "numpy-1.19.2-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:d7ac33585e1f09e7345aa902c281bd777fdb792432d27fca857f39b70e5dd31c"}, {file = "numpy-1.19.5-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:a9d17f2be3b427fbb2bce61e596cf555d6f8a56c222bd2ca148baeeb5e5c783c"},
{file = "numpy-1.19.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:04c7d4ebc5ff93d9822075ddb1751ff392a4375e5885299445fcebf877f179d5"}, {file = "numpy-1.19.5-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:99abf4f353c3d1a0c7a5f27699482c987cf663b1eac20db59b8c7b061eabd7fc"},
{file = "numpy-1.19.2-cp38-cp38-win32.whl", hash = "sha256:51ee93e1fac3fe08ef54ff1c7f329db64d8a9c5557e6c8e908be9497ac76374b"}, {file = "numpy-1.19.5-cp38-cp38-win32.whl", hash = "sha256:384ec0463d1c2671170901994aeb6dce126de0a95ccc3976c43b0038a37329c2"},
{file = "numpy-1.19.2-cp38-cp38-win_amd64.whl", hash = "sha256:1669ec8e42f169ff715a904c9b2105b6640f3f2a4c4c2cb4920ae8b2785dac65"}, {file = "numpy-1.19.5-cp38-cp38-win_amd64.whl", hash = "sha256:811daee36a58dc79cf3d8bdd4a490e4277d0e4b7d103a001a4e73ddb48e7e6aa"},
{file = "numpy-1.19.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl", hash = "sha256:0bfd85053d1e9f60234f28f63d4a5147ada7f432943c113a11afcf3e65d9d4c8"}, {file = "numpy-1.19.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c843b3f50d1ab7361ca4f0b3639bf691569493a56808a0b0c54a051d260b7dbd"},
{file = "numpy-1.19.2.zip", hash = "sha256:0d310730e1e793527065ad7dde736197b705d0e4c9999775f212b03c44a8484c"}, {file = "numpy-1.19.5-cp39-cp39-manylinux1_i686.whl", hash = "sha256:d6631f2e867676b13026e2846180e2c13c1e11289d67da08d71cacb2cd93d4aa"},
{file = "numpy-1.19.5-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:7fb43004bce0ca31d8f13a6eb5e943fa73371381e53f7074ed21a4cb786c32f8"},
{file = "numpy-1.19.5-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:2ea52bd92ab9f768cc64a4c3ef8f4b2580a17af0a5436f6126b08efbd1838371"},
{file = "numpy-1.19.5-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:400580cbd3cff6ffa6293df2278c75aef2d58d8d93d3c5614cd67981dae68ceb"},
{file = "numpy-1.19.5-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:df609c82f18c5b9f6cb97271f03315ff0dbe481a2a02e56aeb1b1a985ce38e60"},
{file = "numpy-1.19.5-cp39-cp39-win32.whl", hash = "sha256:ab83f24d5c52d60dbc8cd0528759532736b56db58adaa7b5f1f76ad551416a1e"},
{file = "numpy-1.19.5-cp39-cp39-win_amd64.whl", hash = "sha256:0eef32ca3132a48e43f6a0f5a82cb508f22ce5a3d6f67a8329c81c8e226d3f6e"},
{file = "numpy-1.19.5-pp36-pypy36_pp73-manylinux2010_x86_64.whl", hash = "sha256:a0d53e51a6cb6f0d9082decb7a4cb6dfb33055308c4c44f53103c073f649af73"},
{file = "numpy-1.19.5.zip", hash = "sha256:a76f502430dd98d7546e1ea2250a7360c065a5fdea52b2dffe8ae7180909b6f4"},
]
packaging = [
{file = "packaging-20.9-py2.py3-none-any.whl", hash = "sha256:67714da7f7bc052e064859c05c595155bd1ee9f69f76557e21f051443c20947a"},
{file = "packaging-20.9.tar.gz", hash = "sha256:5b327ac1320dc863dca72f4514ecc086f31186744b84a230374cc1fd776feae5"},
] ]
pillow = [ pillow = [
{file = "Pillow-7.2.0-cp35-cp35m-macosx_10_10_intel.whl", hash = "sha256:1ca594126d3c4def54babee699c055a913efb01e106c309fa6b04405d474d5ae"}, {file = "Pillow-8.2.0-cp36-cp36m-macosx_10_10_x86_64.whl", hash = "sha256:dc38f57d8f20f06dd7c3161c59ca2c86893632623f33a42d592f097b00f720a9"},
{file = "Pillow-7.2.0-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:c92302a33138409e8f1ad16731568c55c9053eee71bb05b6b744067e1b62380f"}, {file = "Pillow-8.2.0-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:a013cbe25d20c2e0c4e85a9daf438f85121a4d0344ddc76e33fd7e3965d9af4b"},
{file = "Pillow-7.2.0-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:8dad18b69f710bf3a001d2bf3afab7c432785d94fcf819c16b5207b1cfd17d38"}, {file = "Pillow-8.2.0-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:8bb1e155a74e1bfbacd84555ea62fa21c58e0b4e7e6b20e4447b8d07990ac78b"},
{file = "Pillow-7.2.0-cp35-cp35m-manylinux2014_aarch64.whl", hash = "sha256:431b15cffbf949e89df2f7b48528be18b78bfa5177cb3036284a5508159492b5"}, {file = "Pillow-8.2.0-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:c5236606e8570542ed424849f7852a0ff0bce2c4c8d0ba05cc202a5a9c97dee9"},
{file = "Pillow-7.2.0-cp35-cp35m-win32.whl", hash = "sha256:09d7f9e64289cb40c2c8d7ad674b2ed6105f55dc3b09aa8e4918e20a0311e7ad"}, {file = "Pillow-8.2.0-cp36-cp36m-win32.whl", hash = "sha256:12e5e7471f9b637762453da74e390e56cc43e486a88289995c1f4c1dc0bfe727"},
{file = "Pillow-7.2.0-cp35-cp35m-win_amd64.whl", hash = "sha256:0295442429645fa16d05bd567ef5cff178482439c9aad0411d3f0ce9b88b3a6f"}, {file = "Pillow-8.2.0-cp36-cp36m-win_amd64.whl", hash = "sha256:5afe6b237a0b81bd54b53f835a153770802f164c5570bab5e005aad693dab87f"},
{file = "Pillow-7.2.0-cp36-cp36m-macosx_10_10_x86_64.whl", hash = "sha256:ec29604081f10f16a7aea809ad42e27764188fc258b02259a03a8ff7ded3808d"}, {file = "Pillow-8.2.0-cp37-cp37m-macosx_10_10_x86_64.whl", hash = "sha256:cb7a09e173903541fa888ba010c345893cd9fc1b5891aaf060f6ca77b6a3722d"},
{file = "Pillow-7.2.0-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:612cfda94e9c8346f239bf1a4b082fdd5c8143cf82d685ba2dba76e7adeeb233"}, {file = "Pillow-8.2.0-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:0d19d70ee7c2ba97631bae1e7d4725cdb2ecf238178096e8c82ee481e189168a"},
{file = "Pillow-7.2.0-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:0a80dd307a5d8440b0a08bd7b81617e04d870e40a3e46a32d9c246e54705e86f"}, {file = "Pillow-8.2.0-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:083781abd261bdabf090ad07bb69f8f5599943ddb539d64497ed021b2a67e5a9"},
{file = "Pillow-7.2.0-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:06aba4169e78c439d528fdeb34762c3b61a70813527a2c57f0540541e9f433a8"}, {file = "Pillow-8.2.0-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:c6b39294464b03457f9064e98c124e09008b35a62e3189d3513e5148611c9388"},
{file = "Pillow-7.2.0-cp36-cp36m-win32.whl", hash = "sha256:f7e30c27477dffc3e85c2463b3e649f751789e0f6c8456099eea7ddd53be4a8a"}, {file = "Pillow-8.2.0-cp37-cp37m-win32.whl", hash = "sha256:01425106e4e8cee195a411f729cff2a7d61813b0b11737c12bd5991f5f14bcd5"},
{file = "Pillow-7.2.0-cp36-cp36m-win_amd64.whl", hash = "sha256:ffe538682dc19cc542ae7c3e504fdf54ca7f86fb8a135e59dd6bc8627eae6cce"}, {file = "Pillow-8.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:3b570f84a6161cf8865c4e08adf629441f56e32f180f7aa4ccbd2e0a5a02cba2"},
{file = "Pillow-7.2.0-cp37-cp37m-macosx_10_10_x86_64.whl", hash = "sha256:94cf49723928eb6070a892cb39d6c156f7b5a2db4e8971cb958f7b6b104fb4c4"}, {file = "Pillow-8.2.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:031a6c88c77d08aab84fecc05c3cde8414cd6f8406f4d2b16fed1e97634cc8a4"},
{file = "Pillow-7.2.0-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:6edb5446f44d901e8683ffb25ebdfc26988ee813da3bf91e12252b57ac163727"}, {file = "Pillow-8.2.0-cp38-cp38-manylinux1_i686.whl", hash = "sha256:66cc56579fd91f517290ab02c51e3a80f581aba45fd924fcdee01fa06e635812"},
{file = "Pillow-7.2.0-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:52125833b070791fcb5710fabc640fc1df07d087fc0c0f02d3661f76c23c5b8b"}, {file = "Pillow-8.2.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:6c32cc3145928c4305d142ebec682419a6c0a8ce9e33db900027ddca1ec39178"},
{file = "Pillow-7.2.0-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:9ad7f865eebde135d526bb3163d0b23ffff365cf87e767c649550964ad72785d"}, {file = "Pillow-8.2.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:624b977355cde8b065f6d51b98497d6cd5fbdd4f36405f7a8790e3376125e2bb"},
{file = "Pillow-7.2.0-cp37-cp37m-win32.whl", hash = "sha256:c79f9c5fb846285f943aafeafda3358992d64f0ef58566e23484132ecd8d7d63"}, {file = "Pillow-8.2.0-cp38-cp38-win32.whl", hash = "sha256:5cbf3e3b1014dddc45496e8cf38b9f099c95a326275885199f427825c6522232"},
{file = "Pillow-7.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:d350f0f2c2421e65fbc62690f26b59b0bcda1b614beb318c81e38647e0f673a1"}, {file = "Pillow-8.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:463822e2f0d81459e113372a168f2ff59723e78528f91f0bd25680ac185cf797"},
{file = "Pillow-7.2.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:6d7741e65835716ceea0fd13a7d0192961212fd59e741a46bbed7a473c634ed6"}, {file = "Pillow-8.2.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:95d5ef984eff897850f3a83883363da64aae1000e79cb3c321915468e8c6add5"},
{file = "Pillow-7.2.0-cp38-cp38-manylinux1_i686.whl", hash = "sha256:edf31f1150778abd4322444c393ab9c7bd2af271dd4dafb4208fb613b1f3cdc9"}, {file = "Pillow-8.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b91c36492a4bbb1ee855b7d16fe51379e5f96b85692dc8210831fbb24c43e484"},
{file = "Pillow-7.2.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:d08b23fdb388c0715990cbc06866db554e1822c4bdcf6d4166cf30ac82df8c41"}, {file = "Pillow-8.2.0-cp39-cp39-manylinux1_i686.whl", hash = "sha256:d68cb92c408261f806b15923834203f024110a2e2872ecb0bd2a110f89d3c602"},
{file = "Pillow-7.2.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:5e51ee2b8114def244384eda1c82b10e307ad9778dac5c83fb0943775a653cd8"}, {file = "Pillow-8.2.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:f217c3954ce5fd88303fc0c317af55d5e0204106d86dea17eb8205700d47dec2"},
{file = "Pillow-7.2.0-cp38-cp38-win32.whl", hash = "sha256:725aa6cfc66ce2857d585f06e9519a1cc0ef6d13f186ff3447ab6dff0a09bc7f"}, {file = "Pillow-8.2.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:5b70110acb39f3aff6b74cf09bb4169b167e2660dabc304c1e25b6555fa781ef"},
{file = "Pillow-7.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:a060cf8aa332052df2158e5a119303965be92c3da6f2d93b6878f0ebca80b2f6"}, {file = "Pillow-8.2.0-cp39-cp39-win32.whl", hash = "sha256:a7d5e9fad90eff8f6f6106d3b98b553a88b6f976e51fce287192a5d2d5363713"},
{file = "Pillow-7.2.0-pp36-pypy36_pp73-macosx_10_10_x86_64.whl", hash = "sha256:9c87ef410a58dd54b92424ffd7e28fd2ec65d2f7fc02b76f5e9b2067e355ebf6"}, {file = "Pillow-8.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:238c197fc275b475e87c1453b05b467d2d02c2915fdfdd4af126145ff2e4610c"},
{file = "Pillow-7.2.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl", hash = "sha256:e901964262a56d9ea3c2693df68bc9860b8bdda2b04768821e4c44ae797de117"}, {file = "Pillow-8.2.0-pp36-pypy36_pp73-macosx_10_10_x86_64.whl", hash = "sha256:0e04d61f0064b545b989126197930807c86bcbd4534d39168f4aa5fda39bb8f9"},
{file = "Pillow-7.2.0-pp36-pypy36_pp73-win32.whl", hash = "sha256:25930fadde8019f374400f7986e8404c8b781ce519da27792cbe46eabec00c4d"}, {file = "Pillow-8.2.0-pp36-pypy36_pp73-manylinux2010_i686.whl", hash = "sha256:63728564c1410d99e6d1ae8e3b810fe012bc440952168af0a2877e8ff5ab96b9"},
{file = "Pillow-7.2.0.tar.gz", hash = "sha256:97f9e7953a77d5a70f49b9a48da7776dc51e9b738151b22dacf101641594a626"}, {file = "Pillow-8.2.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl", hash = "sha256:c03c07ed32c5324939b19e36ae5f75c660c81461e312a41aea30acdd46f93a7c"},
{file = "Pillow-8.2.0-pp37-pypy37_pp73-macosx_10_10_x86_64.whl", hash = "sha256:4d98abdd6b1e3bf1a1cbb14c3895226816e666749ac040c4e2554231068c639b"},
{file = "Pillow-8.2.0-pp37-pypy37_pp73-manylinux2010_i686.whl", hash = "sha256:aac00e4bc94d1b7813fe882c28990c1bc2f9d0e1aa765a5f2b516e8a6a16a9e4"},
{file = "Pillow-8.2.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl", hash = "sha256:22fd0f42ad15dfdde6c581347eaa4adb9a6fc4b865f90b23378aa7914895e120"},
{file = "Pillow-8.2.0-pp37-pypy37_pp73-win32.whl", hash = "sha256:e98eca29a05913e82177b3ba3d198b1728e164869c613d76d0de4bde6768a50e"},
{file = "Pillow-8.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:8b56553c0345ad6dcb2e9b433ae47d67f95fc23fe28a0bde15a120f25257e291"},
{file = "Pillow-8.2.0.tar.gz", hash = "sha256:a787ab10d7bb5494e5f76536ac460741788f1fbce851068d73a87ca7c35fc3e1"},
] ]
pluggy = [ pluggy = [
{file = "pluggy-0.13.1-py2.py3-none-any.whl", hash = "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d"}, {file = "pluggy-0.13.1-py2.py3-none-any.whl", hash = "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d"},
{file = "pluggy-0.13.1.tar.gz", hash = "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0"}, {file = "pluggy-0.13.1.tar.gz", hash = "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0"},
] ]
py = [ py = [
{file = "py-1.9.0-py2.py3-none-any.whl", hash = "sha256:366389d1db726cd2fcfc79732e75410e5fe4d31db13692115529d34069a043c2"}, {file = "py-1.10.0-py2.py3-none-any.whl", hash = "sha256:3b80836aa6d1feeaa108e046da6423ab8f6ceda6468545ae8d02d9d58d18818a"},
{file = "py-1.9.0.tar.gz", hash = "sha256:9ca6883ce56b4e8da7e79ac18787889fa5206c79dcc67fb065376cd2fe03f342"}, {file = "py-1.10.0.tar.gz", hash = "sha256:21b81bda15b66ef5e1a777a21c4dcd9c20ad3efd0b3f817e7a809035269e1bd3"},
] ]
pycparser = [ pycparser = [
{file = "pycparser-2.20-py2.py3-none-any.whl", hash = "sha256:7582ad22678f0fcd81102833f60ef8d0e57288b6b5fb00323d101be910e35705"}, {file = "pycparser-2.20-py2.py3-none-any.whl", hash = "sha256:7582ad22678f0fcd81102833f60ef8d0e57288b6b5fb00323d101be910e35705"},
{file = "pycparser-2.20.tar.gz", hash = "sha256:2d475327684562c3a96cc71adf7dc8c4f0565175cf86b6d7a404ff4c771f15f0"}, {file = "pycparser-2.20.tar.gz", hash = "sha256:2d475327684562c3a96cc71adf7dc8c4f0565175cf86b6d7a404ff4c771f15f0"},
] ]
pyglet = [ pyglet = [
{file = "pyglet-1.5.0-py2.py3-none-any.whl", hash = "sha256:a42f599ebd0dc8113563041c402ae09be05cdcbc643bb1183785141ba3c3304e"}, {file = "pyglet-1.5.15-py3-none-any.whl", hash = "sha256:4401cc176580e4e17e2df8bbf7536f27e691327dc3f38f209a12f1859c70aed2"},
{file = "pyglet-1.5.0.zip", hash = "sha256:6ea918985feddfa9bf0fcc01ffe9ff5849e7b6e832d9b2e03b9d2a36369cb6ee"}, {file = "pyglet-1.5.15.zip", hash = "sha256:da9d8337388cedabf1f1c5dc21a45bb2b0e5327fba47f996c8573818c3dfa478"},
]
pyparsing = [
{file = "pyparsing-2.4.7-py2.py3-none-any.whl", hash = "sha256:ef9d7589ef3c200abe66653d3f1ab1033c3c419ae9b9bdb1240a85b024efc88b"},
{file = "pyparsing-2.4.7.tar.gz", hash = "sha256:c203ec8783bf771a155b207279b9bccb8dea02d8f0c9e5f8ead507bc3246ecc1"},
] ]
pytest = [ pytest = [
{file = "pytest-3.10.1-py2.py3-none-any.whl", hash = "sha256:3f193df1cfe1d1609d4c583838bea3d532b18d6160fd3f55c9447fdca30848ec"}, {file = "pytest-6.2.4-py3-none-any.whl", hash = "sha256:91ef2131a9bd6be8f76f1f08eac5c5317221d6ad1e143ae03894b862e8976890"},
{file = "pytest-3.10.1.tar.gz", hash = "sha256:e246cf173c01169b9617fc07264b7b1316e78d7a650055235d6d897bc80d9660"}, {file = "pytest-6.2.4.tar.gz", hash = "sha256:50bcad0a0b9c5a72c8e4e7c9855a3ad496ca6a881a3641b4260605450772c54b"},
] ]
scipy = [ scipy = [
{file = "scipy-1.5.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:cca9fce15109a36a0a9f9cfc64f870f1c140cb235ddf27fe0328e6afb44dfed0"}, {file = "scipy-1.5.4-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:4f12d13ffbc16e988fa40809cbbd7a8b45bc05ff6ea0ba8e3e41f6f4db3a9e47"},
{file = "scipy-1.5.2-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:1c7564a4810c1cd77fcdee7fa726d7d39d4e2695ad252d7c86c3ea9d85b7fb8f"}, {file = "scipy-1.5.4-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:a254b98dbcc744c723a838c03b74a8a34c0558c9ac5c86d5561703362231107d"},
{file = "scipy-1.5.2-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:07e52b316b40a4f001667d1ad4eb5f2318738de34597bd91537851365b6c61f1"}, {file = "scipy-1.5.4-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:368c0f69f93186309e1b4beb8e26d51dd6f5010b79264c0f1e9ca00cd92ea8c9"},
{file = "scipy-1.5.2-cp36-cp36m-win32.whl", hash = "sha256:d56b10d8ed72ec1be76bf10508446df60954f08a41c2d40778bc29a3a9ad9bce"}, {file = "scipy-1.5.4-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:4598cf03136067000855d6b44d7a1f4f46994164bcd450fb2c3d481afc25dd06"},
{file = "scipy-1.5.2-cp36-cp36m-win_amd64.whl", hash = "sha256:8e28e74b97fc8d6aa0454989db3b5d36fc27e69cef39a7ee5eaf8174ca1123cb"}, {file = "scipy-1.5.4-cp36-cp36m-win32.whl", hash = "sha256:e98d49a5717369d8241d6cf33ecb0ca72deee392414118198a8e5b4c35c56340"},
{file = "scipy-1.5.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:6e86c873fe1335d88b7a4bfa09d021f27a9e753758fd75f3f92d714aa4093768"}, {file = "scipy-1.5.4-cp36-cp36m-win_amd64.whl", hash = "sha256:65923bc3809524e46fb7eb4d6346552cbb6a1ffc41be748535aa502a2e3d3389"},
{file = "scipy-1.5.2-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:a0afbb967fd2c98efad5f4c24439a640d39463282040a88e8e928db647d8ac3d"}, {file = "scipy-1.5.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:9ad4fcddcbf5dc67619379782e6aeef41218a79e17979aaed01ed099876c0e62"},
{file = "scipy-1.5.2-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:eecf40fa87eeda53e8e11d265ff2254729d04000cd40bae648e76ff268885d66"}, {file = "scipy-1.5.4-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:f87b39f4d69cf7d7529d7b1098cb712033b17ea7714aed831b95628f483fd012"},
{file = "scipy-1.5.2-cp37-cp37m-win32.whl", hash = "sha256:315aa2165aca31375f4e26c230188db192ed901761390be908c9b21d8b07df62"}, {file = "scipy-1.5.4-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:25b241034215247481f53355e05f9e25462682b13bd9191359075682adcd9554"},
{file = "scipy-1.5.2-cp37-cp37m-win_amd64.whl", hash = "sha256:ec5fe57e46828d034775b00cd625c4a7b5c7d2e354c3b258d820c6c72212a6ec"}, {file = "scipy-1.5.4-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:fa789583fc94a7689b45834453fec095245c7e69c58561dc159b5d5277057e4c"},
{file = "scipy-1.5.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:fc98f3eac993b9bfdd392e675dfe19850cc8c7246a8fd2b42443e506344be7d9"}, {file = "scipy-1.5.4-cp37-cp37m-win32.whl", hash = "sha256:d6d25c41a009e3c6b7e757338948d0076ee1dd1770d1c09ec131f11946883c54"},
{file = "scipy-1.5.2-cp38-cp38-manylinux1_i686.whl", hash = "sha256:a785409c0fa51764766840185a34f96a0a93527a0ff0230484d33a8ed085c8f8"}, {file = "scipy-1.5.4-cp37-cp37m-win_amd64.whl", hash = "sha256:2c872de0c69ed20fb1a9b9cf6f77298b04a26f0b8720a5457be08be254366c6e"},
{file = "scipy-1.5.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:0a0e9a4e58a4734c2eba917f834b25b7e3b6dc333901ce7784fd31aefbd37b2f"}, {file = "scipy-1.5.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e360cb2299028d0b0d0f65a5c5e51fc16a335f1603aa2357c25766c8dab56938"},
{file = "scipy-1.5.2-cp38-cp38-win32.whl", hash = "sha256:dac09281a0eacd59974e24525a3bc90fa39b4e95177e638a31b14db60d3fa806"}, {file = "scipy-1.5.4-cp38-cp38-manylinux1_i686.whl", hash = "sha256:3397c129b479846d7eaa18f999369a24322d008fac0782e7828fa567358c36ce"},
{file = "scipy-1.5.2-cp38-cp38-win_amd64.whl", hash = "sha256:92eb04041d371fea828858e4fff182453c25ae3eaa8782d9b6c32b25857d23bc"}, {file = "scipy-1.5.4-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:168c45c0c32e23f613db7c9e4e780bc61982d71dcd406ead746c7c7c2f2004ce"},
{file = "scipy-1.5.2.tar.gz", hash = "sha256:066c513d90eb3fd7567a9e150828d39111ebd88d3e924cdfc9f8ce19ab6f90c9"}, {file = "scipy-1.5.4-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:213bc59191da2f479984ad4ec39406bf949a99aba70e9237b916ce7547b6ef42"},
{file = "scipy-1.5.4-cp38-cp38-win32.whl", hash = "sha256:634568a3018bc16a83cda28d4f7aed0d803dd5618facb36e977e53b2df868443"},
{file = "scipy-1.5.4-cp38-cp38-win_amd64.whl", hash = "sha256:b03c4338d6d3d299e8ca494194c0ae4f611548da59e3c038813f1a43976cb437"},
{file = "scipy-1.5.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3d5db5d815370c28d938cf9b0809dade4acf7aba57eaf7ef733bfedc9b2474c4"},
{file = "scipy-1.5.4-cp39-cp39-manylinux1_i686.whl", hash = "sha256:6b0ceb23560f46dd236a8ad4378fc40bad1783e997604ba845e131d6c680963e"},
{file = "scipy-1.5.4-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:ed572470af2438b526ea574ff8f05e7f39b44ac37f712105e57fc4d53a6fb660"},
{file = "scipy-1.5.4-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:8c8d6ca19c8497344b810b0b0344f8375af5f6bb9c98bd42e33f747417ab3f57"},
{file = "scipy-1.5.4-cp39-cp39-win32.whl", hash = "sha256:d84cadd7d7998433334c99fa55bcba0d8b4aeff0edb123b2a1dfcface538e474"},
{file = "scipy-1.5.4-cp39-cp39-win_amd64.whl", hash = "sha256:cc1f78ebc982cd0602c9a7615d878396bec94908db67d4ecddca864d049112f2"},
{file = "scipy-1.5.4.tar.gz", hash = "sha256:4a453d5e5689de62e5d38edf40af3f17560bfd63c9c5bd228c18c1f99afa155b"},
] ]
six = [ six = [
{file = "six-1.15.0-py2.py3-none-any.whl", hash = "sha256:8b74bedcbbbaca38ff6d7491d76f2b06b3592611af620f8426e82dddb04a5ced"}, {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"},
{file = "six-1.15.0.tar.gz", hash = "sha256:30639c035cdb23534cd4aa2dd52c3bf48f06e5f4a941509c8bafd8ce11080259"}, {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
]
toml = [
{file = "toml-0.10.2-py2.py3-none-any.whl", hash = "sha256:806143ae5bfb6a3c6e736a764057db0e6a0e05e338b5630894a5f779cabb4f9b"},
{file = "toml-0.10.2.tar.gz", hash = "sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f"},
]
typing-extensions = [
{file = "typing_extensions-3.10.0.0-py2-none-any.whl", hash = "sha256:0ac0f89795dd19de6b97debb0c6af1c70987fd80a2d62d1958f7e56fcc31b497"},
{file = "typing_extensions-3.10.0.0-py3-none-any.whl", hash = "sha256:779383f6086d90c99ae41cf0ff39aac8a7937a9283ce0a414e5dd782f4c94a84"},
{file = "typing_extensions-3.10.0.0.tar.gz", hash = "sha256:50b6f157849174217d0656f99dc82fe932884fb250826c18350e159ec6cdf342"},
] ]
zipp = [ zipp = [
{file = "zipp-3.3.0-py3-none-any.whl", hash = "sha256:eed8ec0b8d1416b2ca33516a37a08892442f3954dee131e92cfd92d8fe3e7066"}, {file = "zipp-3.4.1-py3-none-any.whl", hash = "sha256:51cb66cc54621609dd593d1787f286ee42a5c0adbb4b29abea5a63edc3e03098"},
{file = "zipp-3.3.0.tar.gz", hash = "sha256:64ad89efee774d1897a58607895d80789c59778ea02185dd846ac38394a8642b"}, {file = "zipp-3.4.1.tar.gz", hash = "sha256:3607921face881ba3e026887d8150cca609d517579abe052ac81fc5aeffdbd76"},
] ]

View File

@ -10,12 +10,12 @@ repository = "https://github.com/kngwyu/mujoco-maze"
homepage = "https://github.com/kngwyu/mujoco-maze" homepage = "https://github.com/kngwyu/mujoco-maze"
[tool.poetry.dependencies] [tool.poetry.dependencies]
python = ">=3.6.1" # Compatible python versions must be declared here python = ">=3.6" # Compatible python versions must be declared here
gym = ">=0.16" gym = ">=0.16"
mujoco-py = ">=1.5" mujoco-py = ">=1.5"
[tool.poetry.dev-dependencies] [tool.poetry.dev-dependencies]
pytest = "^3.0" pytest = "^6.2"
[tool.poetry.scripts] [tool.poetry.scripts]
test = "pytest:main" test = "pytest:main"

View File

@ -13,7 +13,7 @@ from mujoco_maze.maze_env_utils import Line
) )
def test_distance(l1, l2, p, ans): def test_distance(l1, l2, p, ans):
line = Line(l1, l2) line = Line(l1, l2)
point = np.complex(*p) point = complex(*p)
assert abs(line.distance(point) - ans) <= 1e-8 assert abs(line.distance(point) - ans) <= 1e-8