diff --git a/mujoco_maze/agent_model.py b/mujoco_maze/agent_model.py index 1b5aea6..bbd41ac 100644 --- a/mujoco_maze/agent_model.py +++ b/mujoco_maze/agent_model.py @@ -6,6 +6,7 @@ from typing import Optional import numpy as np from gym.envs.mujoco.mujoco_env import MujocoEnv from gym.utils import EzPickle +from gym.spaces import Space class AgentModel(ABC, MujocoEnv, EzPickle): @@ -15,8 +16,8 @@ class AgentModel(ABC, MujocoEnv, EzPickle): RADIUS: Optional[float] = None OBJBALL_TYPE: Optional[str] = None - def __init__(self, file_path: str, frame_skip: int) -> None: - MujocoEnv.__init__(self, file_path, frame_skip) + def __init__(self, file_path: str, frame_skip: int, observation_space: Space) -> None: + MujocoEnv.__init__(self, file_path, frame_skip, observation_space) EzPickle.__init__(self) def close(self): diff --git a/mujoco_maze/maze_env.py b/mujoco_maze/maze_env.py index bb5cdb4..d1725bd 100644 --- a/mujoco_maze/maze_env.py +++ b/mujoco_maze/maze_env.py @@ -18,6 +18,8 @@ import numpy as np from mujoco_maze import maze_env_utils, maze_task from mujoco_maze.agent_model import AgentModel +from gym.core import ObsType + # Directory that contains mujoco xml files. MODEL_DIR = os.path.dirname(os.path.abspath(__file__)) + "/assets" @@ -366,7 +368,7 @@ class MazeEnv(gym.Env): obs = np.concatenate([wrapped_obs[:3]] + additional_obs + [wrapped_obs[3:]]) return np.concatenate([obs, *view, np.array([self.t * 0.001])]) - def reset(self) -> np.ndarray: + def reset(self, **kwargs) -> Tuple[ObsType, dict]: self.t = 0 self.wrapped_env.reset() # Samples a new goal @@ -376,7 +378,8 @@ class MazeEnv(gym.Env): if len(self._init_positions) > 1: xy = np.random.choice(self._init_positions) self.wrapped_env.set_xy(xy) - return self._get_obs() + info = {} + return self._get_obs(), info def set_marker(self) -> None: for i, goal in enumerate(self._task.goals): @@ -410,10 +413,11 @@ class MazeEnv(gym.Env): self._websock_server_pipe = start_server(self._websock_port) return self._websock_server_pipe.send(self._render_image()) else: + self.wrapped_env.render_mode = mode if self.wrapped_env.viewer is None: - self.wrapped_env.render(mode, **kwargs) + self.wrapped_env.render() self._maybe_move_camera(self.wrapped_env.viewer) - return self.wrapped_env.render(mode, **kwargs) + return self.wrapped_env.render() @property def action_space(self): diff --git a/mujoco_maze/point.py b/mujoco_maze/point.py index bee8f60..9745c1f 100644 --- a/mujoco_maze/point.py +++ b/mujoco_maze/point.py @@ -9,12 +9,22 @@ Based on `models`_ and `rllab`_. from typing import Optional, Tuple import gym +import mujoco import numpy as np from mujoco_maze.agent_model import AgentModel class PointEnv(AgentModel): + metadata = { + "render_modes": [ + "human", + "rgb_array", + "depth_array", + ], + "render_fps": 50, + } + FILE: str = "point.xml" ORI_IND: int = 2 MANUAL_COLLISION: bool = True @@ -24,15 +34,15 @@ class PointEnv(AgentModel): VELOCITY_LIMITS: float = 10.0 def __init__(self, file_path: Optional[str] = None) -> None: - super().__init__(file_path, 1) high = np.inf * np.ones(6, dtype=np.float32) high[3:] = self.VELOCITY_LIMITS * 1.2 high[self.ORI_IND] = np.pi low = -high - self.observation_space = gym.spaces.Box(low, high) + observation_space = gym.spaces.Box(low, high) + super().__init__(file_path, 1, observation_space) def step(self, action: np.ndarray) -> Tuple[np.ndarray, float, bool, dict]: - qpos = self.sim.data.qpos.copy() + qpos = self.data.qpos.copy() qpos[2] += action[1] # Clip orientation if qpos[2] < -np.pi: @@ -43,26 +53,26 @@ class PointEnv(AgentModel): # Compute increment in each direction qpos[0] += np.cos(ori) * action[0] qpos[1] += np.sin(ori) * action[0] - qvel = np.clip(self.sim.data.qvel, -self.VELOCITY_LIMITS, self.VELOCITY_LIMITS) + qvel = np.clip(self.data.qvel, -self.VELOCITY_LIMITS, self.VELOCITY_LIMITS) self.set_state(qpos, qvel) for _ in range(0, self.frame_skip): - self.sim.step() + mujoco.mj_step(self.model, self.data) next_obs = self._get_obs() return next_obs, 0.0, False, {} def _get_obs(self): return np.concatenate( [ - self.sim.data.qpos.flat[:3], # Only point-relevant coords. - self.sim.data.qvel.flat[:3], + self.data.qpos.flat[:3], # Only point-relevant coords. + self.data.qvel.flat[:3], ] ) def reset_model(self): qpos = self.init_qpos + self.np_random.uniform( - size=self.sim.model.nq, low=-0.1, high=0.1 + size=self.model.nq, low=-0.1, high=0.1 ) - qvel = self.init_qvel + self.np_random.randn(self.sim.model.nv) * 0.1 + qvel = self.init_qvel + self.np_random.random(self.model.nv) * 0.1 # Set everything other than point to original position and 0 velocity. qpos[3:] = self.init_qpos[3:] @@ -71,12 +81,12 @@ class PointEnv(AgentModel): return self._get_obs() def get_xy(self): - return self.sim.data.qpos[:2].copy() + return self.data.qpos[:2].copy() def set_xy(self, xy: np.ndarray) -> None: - qpos = self.sim.data.qpos.copy() + qpos = self.data.qpos.copy() qpos[:2] = xy - self.set_state(qpos, self.sim.data.qvel) + self.set_state(qpos, self.data.qvel) def get_ori(self): - return self.sim.data.qpos[self.ORI_IND] + return self.data.qpos[self.ORI_IND]