mujoco_maze/tests/test_intersect.py

85 lines
2.1 KiB
Python

import numpy as np
import pytest
from mujoco_maze.maze_env_utils import Line
@pytest.mark.parametrize(
"l1, l2, p, ans",
[
((0.0, 0.0), (4.0, 4.0), (1.0, 3.0), 2.0 ** 0.5),
((-3.0, -3.0), (0.0, 1.0), (-3.0, 1.0), 2.4),
],
)
def test_distance(l1, l2, p, ans):
line = Line(l1, l2)
point = complex(*p)
assert abs(line.distance(point) - ans) <= 1e-8
@pytest.mark.parametrize(
"l1p1, l1p2, l2p1, l2p2, none",
[
((0.0, 0.0), (1.0, 0.0), (0.0, -1.0), (1.0, 1.0), False),
((1.0, 1.0), (2.0, 3.0), (-1.0, 1.5), (1.5, 1.0), False),
((1.5, 1.5), (2.0, 3.0), (-1.0, 1.5), (1.5, 1.0), True),
((0.0, 0.0), (2.0, 0.0), (1.0, 0.0), (1.0, 3.0), False),
],
)
def test_intersect(l1p1, l1p2, l2p1, l2p2, none):
l1 = Line(l1p1, l1p2)
l2 = Line(l2p1, l2p2)
i1 = l1.intersect(l2)
i2 = line_intersect(l1p1, l1p2, l2p1, l2p2)
if none:
assert i1 is None and i2 is None
else:
assert i1 is not None
i1 = np.array([i1.real, i1.imag])
np.testing.assert_array_almost_equal(i1, np.array(i2))
def line_intersect(pt1, pt2, ptA, ptB):
"""
Taken from https://www.cs.hmc.edu/ACM/lectures/intersections.html
Returns the intersection of Line(pt1,pt2) and Line(ptA,ptB).
"""
import math
DET_TOLERANCE = 0.00000001
# the first line is pt1 + r*(pt2-pt1)
# in component form:
x1, y1 = pt1
x2, y2 = pt2
dx1 = x2 - x1
dy1 = y2 - y1
# the second line is ptA + s*(ptB-ptA)
x, y = ptA
xB, yB = ptB
dx = xB - x
dy = yB - y
DET = -dx1 * dy + dy1 * dx
if math.fabs(DET) < DET_TOLERANCE:
return None
# now, the determinant should be OK
DETinv = 1.0 / DET
# find the scalar amount along the "self" segment
r = DETinv * (-dy * (x - x1) + dx * (y - y1))
# find the scalar amount along the input line
s = DETinv * (-dy1 * (x - x1) + dx1 * (y - y1))
# return the average of the two descriptions
xi = (x1 + r * dx1 + x + s * dx) / 2.0
yi = (y1 + r * dy1 + y + s * dy) / 2.0
if r >= 0 and 0 <= s <= 1:
return xi, yi
else:
return None