mujoco_maze/mujoco_maze/point.py

93 lines
2.9 KiB
Python

# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Wrapper for creating the ant environment in gym_mujoco."""
import math
from typing import Optional, Tuple
import gym
import numpy as np
from mujoco_maze.agent_model import AgentModel
class PointEnv(AgentModel):
FILE: str = "point.xml"
ORI_IND: int = 2
VELOCITY_LIMITS: float = 10.0
def __init__(self, file_path: Optional[str] = None):
super().__init__(file_path, 1)
high = np.inf * np.ones(6, dtype=np.float32)
high[3:] = self.VELOCITY_LIMITS
high[self.ORI_IND] = np.pi
low = -high
self.observation_space = gym.spaces.Box(low, high)
def step(self, action: np.ndarray) -> Tuple[np.ndarray, float, bool, dict]:
qpos = np.copy(self.sim.data.qpos)
qpos[2] += action[1]
# Clip orientation
if qpos[2] < -np.pi:
qpos[2] += np.pi * 2
elif np.pi < qpos[2]:
qpos[2] -= np.pi * 2
ori = qpos[2]
# Compute increment in each direction
qpos[0] += math.cos(ori) * action[0]
qpos[1] += math.sin(ori) * action[0]
qvel = np.clip(self.sim.data.qvel, -self.VELOCITY_LIMITS, self.VELOCITY_LIMITS)
self.set_state(qpos, qvel)
for _ in range(0, self.frame_skip):
self.sim.step()
next_obs = self._get_obs()
return next_obs, 0.0, False, {}
def _get_obs(self):
return np.concatenate(
[
self.sim.data.qpos.flat[:3], # Only point-relevant coords.
self.sim.data.qvel.flat[:3],
]
)
def reset_model(self):
qpos = self.init_qpos + self.np_random.uniform(
size=self.sim.model.nq, low=-0.1, high=0.1
)
qvel = self.init_qvel + self.np_random.randn(self.sim.model.nv) * 0.1
# Set everything other than point to original position and 0 velocity.
qpos[3:] = self.init_qpos[3:]
qvel[3:] = 0.0
self.set_state(qpos, qvel)
return self._get_obs()
def get_xy(self):
return np.copy(self.sim.data.qpos[:2])
def set_xy(self, xy):
qpos = np.copy(self.sim.data.qpos)
qpos[0] = xy[0]
qpos[1] = xy[1]
qvel = self.sim.data.qvel
self.set_state(qpos, qvel)
def get_ori(self):
return self.sim.data.qpos[self.ORI_IND]