mujoco_maze/mujoco_maze/maze_env_utils.py
2020-06-24 22:42:52 +09:00

185 lines
5.1 KiB
Python

# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Adapted from rllab maze_env_utils.py."""
import itertools as it
import math
from enum import Enum
import numpy as np
class MazeCell(Enum):
# Robot: Start position
ROBOT = -1
# Blocks
EMPTY = 0
BLOCK = 1
CHASM = 2
# Moves
X = 11
Y = 12
Z = 13
XY = 14
XZ = 15
YZ = 16
XYZ = 17
SpinXY = 18
def is_block(self) -> bool:
return self == self.BLOCK
def is_chasm(self) -> bool:
return self == self.CHASM
def is_robot(self) -> bool:
return self == self.ROBOT
def is_wall_or_chasm(self) -> bool:
return self in [self.BLOCK, self.CHASM]
def can_move_x(self) -> bool:
return self in [
self.X,
self.XY,
self.XZ,
self.XYZ,
self.SpinXY,
]
def can_move_y(self):
return self in [
self.Y,
self.XY,
self.YZ,
self.XYZ,
self.SpinXY,
]
def can_move_z(self):
return self in [self.Z, self.XZ, self.YZ, self.XYZ]
def can_spin(self):
return self == self.SpinXY
def can_move(self):
return self.can_move_x() or self.can_move_y() or self.can_move_z()
class Collision:
"""For manual collision detection.
"""
ARROUND = np.array([[-1, 0], [1, 0], [0, -1], [0, 1]])
OFFSET = {False: 0.48, True: 0.51}
def __init__(
self, structure: list, size_scaling: float, torso_x: float, torso_y: float,
) -> None:
h, w = len(structure), len(structure[0])
self.objects = []
def is_block(pos) -> bool:
i, j = pos
if 0 <= i < h and 0 <= j < w:
return structure[i][j].is_block()
else:
return False
def offset(pos, index) -> float:
return self.OFFSET[is_block(pos + self.ARROUND[index])]
for i, j in it.product(range(len(structure)), range(len(structure[0]))):
if not structure[i][j].is_block():
continue
pos = np.array([i, j])
y_base = i * size_scaling - torso_y
min_y = y_base - size_scaling * offset(pos, 0)
max_y = y_base + size_scaling * offset(pos, 1)
x_base = j * size_scaling - torso_x
min_x = x_base - size_scaling * offset(pos, 2)
max_x = x_base + size_scaling * offset(pos, 3)
self.objects.append((min_y, max_y, min_x, max_x))
def is_in(self, old_pos: np.ndarray, new_pos: np.ndarray) -> bool:
# Heuristics to prevent the agent from going through the wall
for x, y in ((old_pos + new_pos) / 2, new_pos):
for min_y, max_y, min_x, max_x in self.objects:
if min_x <= x <= max_x and min_y <= y <= max_y:
return True
return False
def line_intersect(pt1, pt2, ptA, ptB):
"""
Taken from https://www.cs.hmc.edu/ACM/lectures/intersections.html
Returns the intersection of Line(pt1,pt2) and Line(ptA,ptB).
"""
DET_TOLERANCE = 0.00000001
# the first line is pt1 + r*(pt2-pt1)
# in component form:
x1, y1 = pt1
x2, y2 = pt2
dx1 = x2 - x1
dy1 = y2 - y1
# the second line is ptA + s*(ptB-ptA)
x, y = ptA
xB, yB = ptB
dx = xB - x
dy = yB - y
DET = -dx1 * dy + dy1 * dx
if math.fabs(DET) < DET_TOLERANCE:
return (0, 0, 0, 0, 0)
# now, the determinant should be OK
DETinv = 1.0 / DET
# find the scalar amount along the "self" segment
r = DETinv * (-dy * (x - x1) + dx * (y - y1))
# find the scalar amount along the input line
s = DETinv * (-dy1 * (x - x1) + dx1 * (y - y1))
# return the average of the two descriptions
xi = (x1 + r * dx1 + x + s * dx) / 2.0
yi = (y1 + r * dy1 + y + s * dy) / 2.0
return (xi, yi, 1, r, s)
def ray_segment_intersect(ray, segment):
"""
Check if the ray originated from (x, y) with direction theta intersect the line
segment (x1, y1) -- (x2, y2), and return the intersection point if there is one.
"""
(x, y), theta = ray
# (x1, y1), (x2, y2) = segment
pt1 = (x, y)
pt2 = (x + math.cos(theta), y + math.sin(theta))
xo, yo, valid, r, s = line_intersect(pt1, pt2, *segment)
if valid and r >= 0 and 0 <= s <= 1:
return (xo, yo)
return None
def point_distance(p1, p2):
x1, y1 = p1
x2, y2 = p2
return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5