185 lines
5.1 KiB
Python
185 lines
5.1 KiB
Python
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Adapted from rllab maze_env_utils.py."""
|
|
import itertools as it
|
|
import math
|
|
from enum import Enum
|
|
|
|
import numpy as np
|
|
|
|
|
|
class MazeCell(Enum):
|
|
# Robot: Start position
|
|
ROBOT = -1
|
|
# Blocks
|
|
EMPTY = 0
|
|
BLOCK = 1
|
|
CHASM = 2
|
|
# Moves
|
|
X = 11
|
|
Y = 12
|
|
Z = 13
|
|
XY = 14
|
|
XZ = 15
|
|
YZ = 16
|
|
XYZ = 17
|
|
SpinXY = 18
|
|
|
|
def is_block(self) -> bool:
|
|
return self == self.BLOCK
|
|
|
|
def is_chasm(self) -> bool:
|
|
return self == self.CHASM
|
|
|
|
def is_robot(self) -> bool:
|
|
return self == self.ROBOT
|
|
|
|
def is_wall_or_chasm(self) -> bool:
|
|
return self in [self.BLOCK, self.CHASM]
|
|
|
|
def can_move_x(self) -> bool:
|
|
return self in [
|
|
self.X,
|
|
self.XY,
|
|
self.XZ,
|
|
self.XYZ,
|
|
self.SpinXY,
|
|
]
|
|
|
|
def can_move_y(self):
|
|
return self in [
|
|
self.Y,
|
|
self.XY,
|
|
self.YZ,
|
|
self.XYZ,
|
|
self.SpinXY,
|
|
]
|
|
|
|
def can_move_z(self):
|
|
return self in [self.Z, self.XZ, self.YZ, self.XYZ]
|
|
|
|
def can_spin(self):
|
|
return self == self.SpinXY
|
|
|
|
def can_move(self):
|
|
return self.can_move_x() or self.can_move_y() or self.can_move_z()
|
|
|
|
|
|
class Collision:
|
|
"""For manual collision detection.
|
|
"""
|
|
|
|
ARROUND = np.array([[-1, 0], [1, 0], [0, -1], [0, 1]])
|
|
OFFSET = {False: 0.48, True: 0.51}
|
|
|
|
def __init__(
|
|
self, structure: list, size_scaling: float, torso_x: float, torso_y: float,
|
|
) -> None:
|
|
h, w = len(structure), len(structure[0])
|
|
self.objects = []
|
|
|
|
def is_block(pos) -> bool:
|
|
i, j = pos
|
|
if 0 <= i < h and 0 <= j < w:
|
|
return structure[i][j].is_block()
|
|
else:
|
|
return False
|
|
|
|
def offset(pos, index) -> float:
|
|
return self.OFFSET[is_block(pos + self.ARROUND[index])]
|
|
|
|
for i, j in it.product(range(len(structure)), range(len(structure[0]))):
|
|
if not structure[i][j].is_block():
|
|
continue
|
|
pos = np.array([i, j])
|
|
y_base = i * size_scaling - torso_y
|
|
min_y = y_base - size_scaling * offset(pos, 0)
|
|
max_y = y_base + size_scaling * offset(pos, 1)
|
|
x_base = j * size_scaling - torso_x
|
|
min_x = x_base - size_scaling * offset(pos, 2)
|
|
max_x = x_base + size_scaling * offset(pos, 3)
|
|
self.objects.append((min_y, max_y, min_x, max_x))
|
|
|
|
def is_in(self, old_pos: np.ndarray, new_pos: np.ndarray) -> bool:
|
|
# Heuristics to prevent the agent from going through the wall
|
|
for x, y in ((old_pos + new_pos) / 2, new_pos):
|
|
for min_y, max_y, min_x, max_x in self.objects:
|
|
if min_x <= x <= max_x and min_y <= y <= max_y:
|
|
return True
|
|
return False
|
|
|
|
|
|
def line_intersect(pt1, pt2, ptA, ptB):
|
|
"""
|
|
Taken from https://www.cs.hmc.edu/ACM/lectures/intersections.html
|
|
Returns the intersection of Line(pt1,pt2) and Line(ptA,ptB).
|
|
"""
|
|
|
|
DET_TOLERANCE = 0.00000001
|
|
|
|
# the first line is pt1 + r*(pt2-pt1)
|
|
# in component form:
|
|
x1, y1 = pt1
|
|
x2, y2 = pt2
|
|
dx1 = x2 - x1
|
|
dy1 = y2 - y1
|
|
|
|
# the second line is ptA + s*(ptB-ptA)
|
|
x, y = ptA
|
|
xB, yB = ptB
|
|
dx = xB - x
|
|
dy = yB - y
|
|
|
|
DET = -dx1 * dy + dy1 * dx
|
|
|
|
if math.fabs(DET) < DET_TOLERANCE:
|
|
return (0, 0, 0, 0, 0)
|
|
|
|
# now, the determinant should be OK
|
|
DETinv = 1.0 / DET
|
|
|
|
# find the scalar amount along the "self" segment
|
|
r = DETinv * (-dy * (x - x1) + dx * (y - y1))
|
|
|
|
# find the scalar amount along the input line
|
|
s = DETinv * (-dy1 * (x - x1) + dx1 * (y - y1))
|
|
|
|
# return the average of the two descriptions
|
|
xi = (x1 + r * dx1 + x + s * dx) / 2.0
|
|
yi = (y1 + r * dy1 + y + s * dy) / 2.0
|
|
return (xi, yi, 1, r, s)
|
|
|
|
|
|
def ray_segment_intersect(ray, segment):
|
|
"""
|
|
Check if the ray originated from (x, y) with direction theta intersect the line
|
|
segment (x1, y1) -- (x2, y2), and return the intersection point if there is one.
|
|
"""
|
|
(x, y), theta = ray
|
|
# (x1, y1), (x2, y2) = segment
|
|
pt1 = (x, y)
|
|
pt2 = (x + math.cos(theta), y + math.sin(theta))
|
|
xo, yo, valid, r, s = line_intersect(pt1, pt2, *segment)
|
|
if valid and r >= 0 and 0 <= s <= 1:
|
|
return (xo, yo)
|
|
return None
|
|
|
|
|
|
def point_distance(p1, p2):
|
|
x1, y1 = p1
|
|
x2, y2 = p2
|
|
return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
|