mujoco_maze/mujoco_maze/maze_env.py

454 lines
18 KiB
Python

"""
Mujoco Maze environment.
Based on `models`_ and `rllab`_.
.. _models: https://github.com/tensorflow/models/tree/master/research/efficient-hrl
.. _rllab: https://github.com/rll/rllab
"""
import itertools as it
import os
import tempfile
import xml.etree.ElementTree as ET
from typing import List, Tuple, Type
import gym
import numpy as np
from mujoco_maze import maze_env_utils, maze_task
from mujoco_maze.agent_model import AgentModel
# Directory that contains mujoco xml files.
MODEL_DIR = os.path.dirname(os.path.abspath(__file__)) + "/assets"
class MazeEnv(gym.Env):
def __init__(
self,
model_cls: Type[AgentModel],
maze_task: Type[maze_task.MazeTask] = maze_task.MazeTask,
top_down_view: float = False,
maze_height: float = 0.5,
maze_size_scaling: float = 4.0,
inner_reward_scaling: float = 1.0,
restitution_coef: float = 0.6,
collision_penalty: float = 0.001,
*args,
**kwargs,
) -> None:
self._task = maze_task(maze_size_scaling)
xml_path = os.path.join(MODEL_DIR, model_cls.FILE)
tree = ET.parse(xml_path)
worldbody = tree.find(".//worldbody")
self._maze_height = height = maze_height
self._maze_size_scaling = size_scaling = maze_size_scaling
self._inner_reward_scaling = inner_reward_scaling
self.t = 0 # time steps
self._observe_blocks = self._task.OBSERVE_BLOCKS
self._put_spin_near_agent = self._task.PUT_SPIN_NEAR_AGENT
self._top_down_view = top_down_view
self._restitution_coef = restitution_coef
self._collision_penalty = collision_penalty
self._maze_structure = structure = self._task.create_maze()
# Elevate the maze to allow for falling.
self.elevated = any(maze_env_utils.MazeCell.CHASM in row for row in structure)
# Are there any movable blocks?
self.blocks = any(any(r.can_move() for r in row) for row in structure)
torso_x, torso_y = self._find_robot()
self._init_torso_x = torso_x
self._init_torso_y = torso_y
self._init_positions = [
(x - torso_x, y - torso_y) for x, y in self._find_all_robots()
]
self._collision = maze_env_utils.Collision(
structure, size_scaling, torso_x, torso_y,
)
self._xy_to_rowcol = lambda x, y: (
2 + (y + size_scaling / 2) / size_scaling,
2 + (x + size_scaling / 2) / size_scaling,
)
# walls (immovable), chasms (fall), movable blocks
self._view = np.zeros([5, 5, 3])
height_offset = 0.0
if self.elevated:
# Increase initial z-pos of ant.
height_offset = height * size_scaling
torso = tree.find(".//body[@name='torso']")
torso.set("pos", f"0 0 {0.75 + height_offset:.2f}")
if self.blocks:
# If there are movable blocks, change simulation settings to perform
# better contact detection.
default = tree.find(".//default")
default.find(".//geom").set("solimp", ".995 .995 .01")
self.movable_blocks = []
for i in range(len(structure)):
for j in range(len(structure[0])):
struct = structure[i][j]
if struct.is_robot() and self._put_spin_near_agent:
struct = maze_env_utils.MazeCell.SpinXY
if self.elevated and not struct.is_chasm():
# Create elevated platform.
x = j * size_scaling - torso_x
y = i * size_scaling - torso_y
h = height / 2 * size_scaling
size = 0.5 * size_scaling
ET.SubElement(
worldbody,
"geom",
name=f"elevated_{i}_{j}",
pos=f"{x} {y} {h}",
size=f"{size} {size} {h}",
type="box",
material="",
contype="1",
conaffinity="1",
rgba="0.9 0.9 0.9 1",
)
if struct.is_block():
# Unmovable block.
# Offset all coordinates so that robot starts at the origin.
x = j * size_scaling - torso_x
y = i * size_scaling - torso_y
h = height / 2 * size_scaling
size = 0.5 * size_scaling
ET.SubElement(
worldbody,
"geom",
name=f"block_{i}_{j}",
pos=f"{x} {y} {h + height_offset}",
size=f"{size} {size} {h}",
type="box",
material="",
contype="1",
conaffinity="1",
rgba="0.4 0.4 0.4 1",
)
elif struct.can_move():
# Movable block.
# The "falling" blocks are shrunk slightly and increased in mass to
# ensure it can fall easily through a gap in the platform blocks.
name = "movable_%d_%d" % (i, j)
self.movable_blocks.append((name, struct))
falling = struct.can_move_z()
spinning = struct.can_spin()
shrink = 0.1 if spinning else 0.99 if falling else 1.0
height_shrink = 0.1 if spinning else 1.0
x = (
j * size_scaling - torso_x + 0.25 * size_scaling
if spinning
else 0.0
)
y = i * size_scaling - torso_y
h = height / 2 * size_scaling * height_shrink
size = 0.5 * size_scaling * shrink
movable_body = ET.SubElement(
worldbody,
"body",
name=name,
pos=f"{x} {y} {height_offset + h}",
)
ET.SubElement(
movable_body,
"geom",
name=f"block_{i}_{j}",
pos="0 0 0",
size=f"{size} {size} {h}",
type="box",
material="",
mass="0.001" if falling else "0.0002",
contype="1",
conaffinity="1",
rgba="0.9 0.1 0.1 1",
)
if struct.can_move_x():
ET.SubElement(
movable_body,
"joint",
armature="0",
axis="1 0 0",
damping="0.0",
limited="true" if falling else "false",
range=f"{-size_scaling} {size_scaling}",
margin="0.01",
name=f"movable_x_{i}_{j}",
pos="0 0 0",
type="slide",
)
if struct.can_move_y():
ET.SubElement(
movable_body,
"joint",
armature="0",
axis="0 1 0",
damping="0.0",
limited="true" if falling else "false",
range=f"{-size_scaling} {size_scaling}",
margin="0.01",
name=f"movable_y_{i}_{j}",
pos="0 0 0",
type="slide",
)
if struct.can_move_z():
ET.SubElement(
movable_body,
"joint",
armature="0",
axis="0 0 1",
damping="0.0",
limited="true",
range=f"{-height_offset} 0",
margin="0.01",
name=f"movable_z_{i}_{j}",
pos="0 0 0",
type="slide",
)
if struct.can_spin():
ET.SubElement(
movable_body,
"joint",
armature="0",
axis="0 0 1",
damping="0.0",
limited="false",
name=f"spinable_{i}_{j}",
pos="0 0 0",
type="ball",
)
torso = tree.find(".//body[@name='torso']")
geoms = torso.findall(".//geom")
for geom in geoms:
if "name" not in geom.attrib:
raise Exception("Every geom of the torso must have a name " "defined")
# Set goals
asset = tree.find(".//asset")
for i, goal in enumerate(self._task.goals):
ET.SubElement(asset, "material", name=f"goal{i}", rgba=goal.rbga_str())
z = goal.pos[2] if goal.dim >= 3 else 0.0
ET.SubElement(
worldbody,
"site",
name=f"goal_site{i}",
pos=f"{goal.pos[0]} {goal.pos[1]} {z}",
size=f"{maze_size_scaling * 0.1}",
material=f"goal{i}",
)
_, file_path = tempfile.mkstemp(text=True, suffix=".xml")
tree.write(file_path)
self.world_tree = tree
self.wrapped_env = model_cls(*args, file_path=file_path, **kwargs)
self.observation_space = self._get_obs_space()
def get_ori(self) -> float:
return self.wrapped_env.get_ori()
def _get_obs_space(self) -> gym.spaces.Box:
shape = self._get_obs().shape
high = np.inf * np.ones(shape, dtype=np.float32)
low = -high
# Set velocity limits
wrapped_obs_space = self.wrapped_env.observation_space
high[: wrapped_obs_space.shape[0]] = wrapped_obs_space.high
low[: wrapped_obs_space.shape[0]] = wrapped_obs_space.low
# Set coordinate limits
low[0], high[0], low[1], high[1] = self._xy_limits()
# Set orientation limits
return gym.spaces.Box(low, high)
def _xy_limits(self) -> Tuple[float, float, float, float]:
xmin, ymin, xmax, ymax = 100, 100, -100, -100
structure = self._maze_structure
for i, j in it.product(range(len(structure)), range(len(structure[0]))):
if structure[i][j].is_block():
continue
xmin, xmax = min(xmin, j), max(xmax, j)
ymin, ymax = min(ymin, i), max(ymax, i)
x0, y0 = self._init_torso_x, self._init_torso_y
scaling = self._maze_size_scaling
xmin, xmax = (xmin - 0.5) * scaling - x0, (xmax + 0.5) * scaling - x0
ymin, ymax = (ymin - 0.5) * scaling - y0, (ymax + 0.5) * scaling - y0
return xmin, xmax, ymin, ymax
def get_top_down_view(self) -> np.ndarray:
self._view = np.zeros_like(self._view)
def valid(row, col):
return self._view.shape[0] > row >= 0 and self._view.shape[1] > col >= 0
def update_view(x, y, d, row=None, col=None):
if row is None or col is None:
x = x - self._robot_x
y = y - self._robot_y
row, col = self._xy_to_rowcol(x, y)
update_view(x, y, d, row=row, col=col)
return
row, row_frac, col, col_frac = int(row), row % 1, int(col), col % 1
if row_frac < 0:
row_frac += 1
if col_frac < 0:
col_frac += 1
if valid(row, col):
self._view[row, col, d] += (
min(1.0, row_frac + 0.5) - max(0.0, row_frac - 0.5)
) * (min(1.0, col_frac + 0.5) - max(0.0, col_frac - 0.5))
if valid(row - 1, col):
self._view[row - 1, col, d] += (max(0.0, 0.5 - row_frac)) * (
min(1.0, col_frac + 0.5) - max(0.0, col_frac - 0.5)
)
if valid(row + 1, col):
self._view[row + 1, col, d] += (max(0.0, row_frac - 0.5)) * (
min(1.0, col_frac + 0.5) - max(0.0, col_frac - 0.5)
)
if valid(row, col - 1):
self._view[row, col - 1, d] += (
min(1.0, row_frac + 0.5) - max(0.0, row_frac - 0.5)
) * (max(0.0, 0.5 - col_frac))
if valid(row, col + 1):
self._view[row, col + 1, d] += (
min(1.0, row_frac + 0.5) - max(0.0, row_frac - 0.5)
) * (max(0.0, col_frac - 0.5))
if valid(row - 1, col - 1):
self._view[row - 1, col - 1, d] += (max(0.0, 0.5 - row_frac)) * max(
0.0, 0.5 - col_frac
)
if valid(row - 1, col + 1):
self._view[row - 1, col + 1, d] += (max(0.0, 0.5 - row_frac)) * max(
0.0, col_frac - 0.5
)
if valid(row + 1, col + 1):
self._view[row + 1, col + 1, d] += (max(0.0, row_frac - 0.5)) * max(
0.0, col_frac - 0.5
)
if valid(row + 1, col - 1):
self._view[row + 1, col - 1, d] += (max(0.0, row_frac - 0.5)) * max(
0.0, 0.5 - col_frac
)
# Draw ant.
robot_x, robot_y = self.wrapped_env.get_body_com("torso")[:2]
self._robot_x = robot_x
self._robot_y = robot_y
self._robot_ori = self.get_ori()
structure = self._maze_structure
size_scaling = self._maze_size_scaling
# Draw immovable blocks and chasms.
for i in range(len(structure)):
for j in range(len(structure[0])):
if structure[i][j].is_block(): # Wall.
update_view(
j * size_scaling - self._init_torso_x,
i * size_scaling - self._init_torso_y,
0,
)
if structure[i][j].is_chasm(): # Chasm.
update_view(
j * size_scaling - self._init_torso_x,
i * size_scaling - self._init_torso_y,
1,
)
# Draw movable blocks.
for block_name, block_type in self.movable_blocks:
block_x, block_y = self.wrapped_env.get_body_com(block_name)[:2]
update_view(block_x, block_y, 2)
return self._view
def _get_obs(self) -> np.ndarray:
wrapped_obs = self.wrapped_env._get_obs()
if self._top_down_view:
view = [self.get_top_down_view().flat]
else:
view = []
if self._observe_blocks:
additional_obs = []
for block_name, block_type in self.movable_blocks:
additional_obs.append(self.wrapped_env.get_body_com(block_name))
wrapped_obs = np.concatenate(
[wrapped_obs[:3]] + additional_obs + [wrapped_obs[3:]]
)
return np.concatenate([wrapped_obs, *view, np.array([self.t * 0.001])])
def reset(self) -> np.ndarray:
self.t = 0
self.wrapped_env.reset()
# Samples a new goal
if self._task.sample_goals():
self.set_marker()
# Samples a new start position
if len(self._init_positions) > 1:
xy = np.random.choice(self._init_positions)
self.wrapped_env.set_xy(xy)
return self._get_obs()
def set_marker(self) -> None:
for i, goal in enumerate(self._task.goals):
idx = self.model.site_name2id(f"goal{i}")
self.data.site_xpos[idx][: len(goal.pos)] = goal.pos
@property
def viewer(self):
return self.wrapped_env.viewer
def render(self, *args, **kwargs):
return self.wrapped_env.render(*args, **kwargs)
@property
def action_space(self):
return self.wrapped_env.action_space
def _find_robot(self) -> Tuple[float, float]:
structure = self._maze_structure
size_scaling = self._maze_size_scaling
for i, j in it.product(range(len(structure)), range(len(structure[0]))):
if structure[i][j].is_robot():
return j * size_scaling, i * size_scaling
raise ValueError("No robot in maze specification.")
def _find_all_robots(self) -> List[Tuple[float, float]]:
structure = self._maze_structure
size_scaling = self._maze_size_scaling
coords = []
for i, j in it.product(range(len(structure)), range(len(structure[0]))):
if structure[i][j].is_robot():
coords.append((j * size_scaling, i * size_scaling))
return coords
def step(self, action) -> Tuple[np.ndarray, float, bool, dict]:
self.t += 1
if self.wrapped_env.MANUAL_COLLISION:
old_pos = self.wrapped_env.get_xy()
inner_next_obs, inner_reward, _, info = self.wrapped_env.step(action)
new_pos = self.wrapped_env.get_xy()
intersection = self._collision.detect_intersection(old_pos, new_pos)
if intersection is not None:
rest_vec = -self._restitution_coef * (new_pos - intersection)
pos = old_pos + rest_vec
self.wrapped_env.set_collision(pos, self._restitution_coef)
inner_reward -= self._collision_penalty
else:
inner_next_obs, inner_reward, _, info = self.wrapped_env.step(action)
next_obs = self._get_obs()
inner_reward = self._inner_reward_scaling * inner_reward
outer_reward = self._task.reward(next_obs)
done = self._task.termination(next_obs)
info["position"] = self.wrapped_env.get_xy()
return next_obs, inner_reward + outer_reward, done, info