mujoco_maze/mujoco_maze/point.py
2021-10-03 11:24:15 +09:00

83 lines
2.5 KiB
Python

"""
A ball-like robot as an explorer in the maze.
Based on `models`_ and `rllab`_.
.. _models: https://github.com/tensorflow/models/tree/master/research/efficient-hrl
.. _rllab: https://github.com/rll/rllab
"""
from typing import Optional, Tuple
import gym
import numpy as np
from mujoco_maze.agent_model import AgentModel
class PointEnv(AgentModel):
FILE: str = "point.xml"
ORI_IND: int = 2
MANUAL_COLLISION: bool = True
RADIUS: float = 0.4
OBJBALL_TYPE: str = "hinge"
VELOCITY_LIMITS: float = 10.0
def __init__(self, file_path: Optional[str] = None) -> None:
super().__init__(file_path, 1)
high = np.inf * np.ones(6, dtype=np.float32)
high[3:] = self.VELOCITY_LIMITS * 1.2
high[self.ORI_IND] = np.pi
low = -high
self.observation_space = gym.spaces.Box(low, high)
def step(self, action: np.ndarray) -> Tuple[np.ndarray, float, bool, dict]:
qpos = self.sim.data.qpos.copy()
qpos[2] += action[1]
# Clip orientation
if qpos[2] < -np.pi:
qpos[2] += np.pi * 2
elif np.pi < qpos[2]:
qpos[2] -= np.pi * 2
ori = qpos[2]
# Compute increment in each direction
qpos[0] += np.cos(ori) * action[0]
qpos[1] += np.sin(ori) * action[0]
qvel = np.clip(self.sim.data.qvel, -self.VELOCITY_LIMITS, self.VELOCITY_LIMITS)
self.set_state(qpos, qvel)
for _ in range(0, self.frame_skip):
self.sim.step()
next_obs = self._get_obs()
return next_obs, 0.0, False, {}
def _get_obs(self):
return np.concatenate(
[
self.sim.data.qpos.flat[:3], # Only point-relevant coords.
self.sim.data.qvel.flat[:3],
]
)
def reset_model(self):
qpos = self.init_qpos + self.np_random.uniform(
size=self.sim.model.nq, low=-0.1, high=0.1
)
qvel = self.init_qvel + self.np_random.randn(self.sim.model.nv) * 0.1
# Set everything other than point to original position and 0 velocity.
qpos[3:] = self.init_qpos[3:]
qvel[3:] = 0.0
self.set_state(qpos, qvel)
return self._get_obs()
def get_xy(self):
return self.sim.data.qpos[:2].copy()
def set_xy(self, xy: np.ndarray) -> None:
qpos = self.sim.data.qpos.copy()
qpos[:2] = xy
self.set_state(qpos, self.sim.data.qvel)
def get_ori(self):
return self.sim.data.qpos[self.ORI_IND]