#!/bin/bash #SBATCH --job-name=reppo_dmc_prod #SBATCH --account=hk-project-p0022232 #SBATCH --partition=accelerated #SBATCH --gres=gpu:1 #SBATCH --nodes=1 #SBATCH --ntasks-per-node=1 #SBATCH --cpus-per-task=8 #SBATCH --time=24:00:00 #SBATCH --mem=32G #SBATCH --output=logs/reppo_dmc_prod_%j.out #SBATCH --error=logs/reppo_dmc_prod_%j.err # Load required modules module load devel/cuda/12.4 # Set environment variables export WANDB_MODE=online export WANDB_PROJECT=reppo_dmc_production export WANDB_API_KEY=01fbfaf5e2f64bedd68febedfcaa7e3bbd54952c export WANDB_ENTITY=dominik_roth # Change to project directory cd /hkfs/home/project/hk-project-robolear/ys1087/Projects/reppo # Activate virtual environment source .venv/bin/activate # Run DMC experiment echo "Starting REPPO production run with DMC..." echo "Job ID: $SLURM_JOB_ID" echo "Node: $SLURM_NODELIST" echo "GPU: $CUDA_VISIBLE_DEVICES" # Environment name passed as variable ENV_NAME=${ENV_NAME:-CartpoleBalance} SEED=${SEED:-0} echo "Environment: $ENV_NAME" echo "Seed: $SEED" # Run the experiment with full 50M steps python reppo_alg/jaxrl/reppo.py \ env=mjx_dmc \ env.name=$ENV_NAME \ hyperparameters.num_envs=1024 \ hyperparameters.num_steps=128 \ hyperparameters.num_mini_batches=128 \ hyperparameters.num_epochs=4 \ hyperparameters.total_time_steps=50000000 \ seed=$SEED \ wandb.mode=online \ wandb.entity=$WANDB_ENTITY \ wandb.project=$WANDB_PROJECT echo "Training completed!"