reppo/reppo_alg/network_utils/torch_models.py
2025-07-21 18:31:20 -04:00

377 lines
11 KiB
Python

import torch
from torch import nn
from torch.distributions import constraints
from torch.distributions.transforms import Transform
from torch.distributions.normal import Normal
from reppo_alg.torchrl.reppo import hl_gauss
class TanhTransform(Transform):
r"""
Transform via the mapping :math:`y = \tanh(x)`.
It is equivalent to
.. code-block:: python
ComposeTransform(
[
AffineTransform(0.0, 2.0),
SigmoidTransform(),
AffineTransform(-1.0, 2.0),
]
)
However this might not be numerically stable, thus it is recommended to use `TanhTransform`
instead.
Note that one should use `cache_size=1` when it comes to `NaN/Inf` values.
"""
domain = constraints.real
codomain = constraints.interval(-1.0, 1.0)
bijective = True
sign = +1
log2 = torch.log(torch.tensor(2.0)).to(
"cuda" if torch.cuda.is_available() else "cpu"
)
def __eq__(self, other):
return isinstance(other, TanhTransform)
def _call(self, x):
return x.tanh()
def _inverse(self, y):
# We do not clamp to the boundary here as it may degrade the performance of certain algorithms.
# one should use `cache_size=1` instead
return torch.atanh(y)
def log_abs_det_jacobian(self, x, y):
# We use a formula that is more numerically stable, see details in the following link
# https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/bijectors/tanh.py#L69-L80
return 2.0 * (self.log2 - x - torch.nn.functional.softplus(-2.0 * x))
def get_activation(name):
if name == "gelu":
return nn.GELU()
elif name == "relu":
return nn.ReLU()
elif name == "swish":
return nn.SiLU()
elif name is None:
return nn.Identity()
else:
raise ValueError(f"Unknown activation: {name}")
def normed_activation_layer(
in_features, out_features, use_norm=True, activation="swish", device=None
):
layers = [nn.Linear(in_features, out_features, device=device)]
if use_norm:
layers.append(nn.RMSNorm([out_features], device=device))
if activation is not None:
layers.append(get_activation(activation))
return nn.Sequential(*layers)
class FCNN(nn.Module):
def __init__(
self,
in_features,
out_features,
hidden_dim=256,
hidden_activation="swish",
output_activation=None,
use_norm=True,
use_output_norm=False,
layers=2,
input_activation=False,
device=None,
):
super().__init__()
net = []
if layers == 1:
net.append(
normed_activation_layer(
in_features,
out_features,
use_norm=use_output_norm,
activation=output_activation,
device=device,
)
)
else:
if input_activation:
net.append(get_activation(hidden_activation))
net.append(
normed_activation_layer(
in_features,
hidden_dim,
use_norm=use_norm,
activation=hidden_activation,
device=device,
)
)
for _ in range(layers - 2):
net.append(
normed_activation_layer(
hidden_dim,
hidden_dim,
use_norm=use_norm,
activation=hidden_activation,
device=device,
)
)
net.append(
normed_activation_layer(
hidden_dim,
out_features,
use_norm=use_output_norm,
activation=output_activation,
device=device,
)
)
self.net = nn.Sequential(*net)
def forward(self, x):
return self.net(x)
class CriticNetwork(nn.Module):
def __init__(
self,
n_obs,
n_act,
hidden_dim=256,
use_norm=True,
use_encoder_norm=False,
encoder_layers=1,
head_layers=1,
pred_layers=1,
device=None,
):
super().__init__()
self.feature_module = FCNN(
in_features=n_obs + n_act,
out_features=hidden_dim,
hidden_dim=hidden_dim,
hidden_activation="swish",
output_activation=None,
use_norm=use_norm,
use_output_norm=use_encoder_norm,
layers=encoder_layers,
device=device,
)
self.critic_module = FCNN(
in_features=hidden_dim,
out_features=1,
hidden_dim=hidden_dim,
hidden_activation="swish",
output_activation=None,
use_norm=use_norm,
use_output_norm=False,
layers=head_layers,
device=device,
)
self.pred_module = FCNN(
in_features=hidden_dim,
out_features=hidden_dim,
hidden_dim=hidden_dim,
hidden_activation="swish",
output_activation=None,
use_norm=use_norm,
use_output_norm=False,
layers=pred_layers,
device=device,
)
def features(self, obs, action):
state = torch.cat([obs, action], dim=-1)
return self.feature_module(state)
def critic_head(self, features):
return self.critic_module(features)
def critic(self, obs, action):
features = self.features(obs, action)
return self.critic_head(features)
def forward(self, obs, action):
features = self.features(obs, action)
return self.pred_module(features)
class Critic(nn.Module):
def __init__(
self,
n_obs,
n_act,
num_atoms: int,
vmin: float,
vmax: float,
hidden_dim=256,
use_norm=True,
use_encoder_norm=False,
encoder_layers=1,
head_layers=1,
pred_layers=1,
device=None,
):
super().__init__()
self.num_atoms = num_atoms
self.vmin = vmin
self.vmax = vmax
self.hidden_dim = hidden_dim
self.feature_module = FCNN(
in_features=n_obs + n_act,
out_features=hidden_dim,
hidden_dim=hidden_dim,
hidden_activation="swish",
output_activation=None,
use_norm=use_norm,
use_output_norm=use_encoder_norm,
layers=encoder_layers,
device=device,
)
self.critic_module = FCNN(
in_features=hidden_dim,
out_features=num_atoms,
hidden_dim=hidden_dim,
hidden_activation="swish",
output_activation=None,
use_norm=use_norm,
use_output_norm=False,
input_activation=True,
layers=head_layers,
device=device,
)
self.pred_module = FCNN(
in_features=hidden_dim,
out_features=hidden_dim,
hidden_dim=hidden_dim,
hidden_activation="swish",
output_activation=None,
use_norm=use_norm,
input_activation=True,
use_output_norm=False,
layers=pred_layers,
device=device,
)
self.values = torch.linspace(
vmin, vmax, num_atoms, device=device, dtype=torch.float32
)
zeros = hl_gauss(
torch.zeros(1, device=device), self.vmin, self.vmax, self.num_atoms
)
zeros.requires_grad = True
self.zero_dist = nn.Parameter(
hl_gauss(
torch.zeros(1, device=device), self.vmin, self.vmax, self.num_atoms
)
)
def forward(self, obs, action):
inp = torch.cat([obs, action], dim=-1)
features = self.feature_module(inp)
next_pred = self.pred_module(features)
logits = self.critic_module(features) + 40.9 * self.zero_dist
value_cats = torch.softmax(logits, dim=-1)
value = value_cats @ self.values
return value, logits, next_pred, features
class Actor(nn.Module):
def __init__(
self,
n_obs,
n_act,
ent_start: float,
kl_start: float,
hidden_dim=256,
use_norm=True,
layers=2,
min_std=0.1,
device=None,
):
super().__init__()
self.model = FCNN(
in_features=n_obs,
out_features=2 * n_act,
hidden_dim=hidden_dim,
hidden_activation="swish",
output_activation=None,
use_norm=use_norm,
use_output_norm=False,
layers=layers,
device=device,
)
self.log_temp = nn.Parameter(
torch.log(torch.tensor(ent_start, device=device, dtype=torch.float32))
)
self.log_lagrange = nn.Parameter(
torch.log(torch.tensor(kl_start, device=device, dtype=torch.float32))
)
self.min_std = min_std
def forward(self, obs: torch.Tensor) -> torch.distributions.Distribution:
x = self.model(obs)
mean, log_std = torch.split(x, x.shape[-1] // 2, dim=-1)
std = torch.exp(log_std) + self.min_std
pi = Normal(mean, std, validate_args=False)
transformed_pi = torch.distributions.TransformedDistribution(
pi, [torch.distributions.TanhTransform()]
)
return (
transformed_pi,
torch.tanh(mean),
torch.exp(self.log_temp),
torch.exp(self.log_lagrange),
)
class StochasticPolicy(nn.Module):
def __init__(self, actor: Actor, normalizer: nn.Module = None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.actor = actor
self.normalizer = normalizer
def forward(self, obs: torch.Tensor) -> torch.distributions.Distribution:
if self.normalizer:
obs = self.normalizer(obs)
return self.actor(obs)
class TD3DeterministicPolicy(nn.Module):
def __init__(
self,
n_obs,
n_act,
hidden_dim=256,
use_norm=True,
layers=2,
device=None,
):
super().__init__()
self.model = FCNN(
in_features=n_obs,
out_features=2 * n_act,
hidden_dim=hidden_dim,
hidden_activation="swish",
output_activation=None,
use_norm=use_norm,
use_output_norm=False,
layers=layers,
device=device,
)
def forward(self, obs: torch.Tensor) -> torch.Tensor:
x = self.model(obs)
mean, _ = torch.split(x, x.shape[-1] // 2, dim=-1)
return torch.tanh(mean)