import torch from torch import nn from torch import nn, optim from torch.utils.data import DataLoader import numpy as np import random import math import shark class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.lstm = nn.LSTM( input_size=8, hidden_size=16, num_layers=3, dropout=0.1, ) self.fc = nn.Linear(16, 1) self.out = nn.Sigmoid() def forward(self, x, prev_state): output, state = self.lstm(x, prev_state) logits = self.fc(output) val = self.out(logits) #print(str(logits.item())+" > "+str(val.item())) return val, state def init_state(self, sequence_length): return (torch.zeros(3, 1, 16), torch.zeros(3, 1, 16)) def train(model, seq_len=16*64): tid = str(int(random.random()*99999)).zfill(5) print("[i] I am "+str(tid)) ltLoss = 50 lltLoss = 52 model.train() criterion = nn.BCELoss() optimizer = optim.Adam(model.parameters(), lr=0.0001) state_h = [None,None] state_c = [None,None] blob = [None,None] correct = [None,None] for epoch in range(1024): state_h[0], state_c[0] = model.init_state(seq_len) state_h[1], state_c[1] = model.init_state(seq_len) blob[0], _ = shark.getSample(min(seq_len, 16*(epoch+1)), 0) blob[1], _ = shark.getSample(min(seq_len, 16*(epoch+1)), 1) optimizer.zero_grad() for i in range(len(blob[0])): for t in range(2): x = torch.tensor([[[float(d) for d in bin(blob[t][i])[2:].zfill(8)]]], dtype=torch.float32) y_pred, (state_h[t], state_c[t]) = model(x, (state_h[t], state_c[t])) loss = criterion(y_pred[0][0][0], torch.tensor(t, dtype=torch.float32)) state_h[t] = state_h[t].detach() state_c[t] = state_c[t].detach() loss.backward() optimizer.step() correct[t] = round(y_pred.item()) == t ltLoss = ltLoss*0.9 + 0.1*loss.item() lltLoss = lltLoss*0.9 + 0.1*ltLoss print({ 'epoch': epoch, 'loss': loss.item(), 'ltLoss': ltLoss, 'ok0': correct[0], 'ok1': correct[1], 'succ': correct[0] and correct[1], 'acc': str(int(max(0, 1-math.sqrt(lltLoss))*100))+"%" }) if epoch % 8 == 0: torch.save(model.state_dict(), 'model_savepoints/'+tid+'_'+str(epoch)+'.n') model = Model() train(model)