Refactored saving/loading of NN weights; changed priorization-mechanism of nodes

while exploring; added bg computation
This commit is contained in:
Dominik Moritz Roth 2022-05-13 17:08:21 +02:00
parent 5eaf83805f
commit 6967243ae2
3 changed files with 42 additions and 17 deletions

BIN
brains/utt.vac Normal file

Binary file not shown.

BIN
brains/uttt.pth.bak Normal file

Binary file not shown.

View File

@ -1,3 +1,5 @@
import os
import io
import time
import random
import threading
@ -69,7 +71,7 @@ class State(ABC):
# Lower prioritys get worked on first
# Higher generations should have higher priority
# Higher cascadeMemory (more influence on higher-order-scores) should have lower priority
return score + self.generation*0.5 - cascadeMemory*0.35
return -cascadeMemory + 100
@abstractmethod
def checkWin(self):
@ -418,7 +420,7 @@ class Runtime():
return
raise Exception('No such action avaible...')
def turn(self, bot=None, calcDepth=3):
def turn(self, bot=None, calcDepth=3, bg=True):
print(str(self.head))
if bot==None:
c = choose('Select action?', ['human', 'bot', 'undo', 'qlen'])
@ -445,14 +447,16 @@ class Runtime():
action = self.head.askUserForAction()
self.performAction(action)
def game(self, bots=None, calcDepth=7):
self.spawnWorker()
def game(self, bots=None, calcDepth=7, bg=True):
if bg:
self.spawnWorker()
if bots==None:
bots = [None]*self.head.playersNum
while self.head.getWinner()==None:
self.turn(bots[self.head.curPlayer], calcDepth)
print(['O','X','No one'][head.getWinner()] + ' won!')
self.killWorker()
self.turn(bots[self.head.curPlayer], calcDepth, bg=True)
print(['O','X','No one'][self.head.getWinner()] + ' won!')
if bg:
self.killWorker()
class NeuralRuntime(Runtime):
def __init__(self, initState):
@ -570,37 +574,58 @@ class Trainer(Runtime):
lLoss = loss_sum
return loss_sum
def main(self, model=None, gens=1024, startGen=12):
def main(self, model=None, gens=1024, startGen=0):
newModel = False
if model==None:
print('[!] No brain found. Creating new one...')
newModel = True
model = self.rootNode.state.getModel()
self.universe.scoreProvider = ['neural','naive'][newModel]
model.train()
for gen in range(startGen, startGen+gens):
print('[#####] Gen '+str(gen)+' training:')
loss = self.trainModel(model, calcDepth=min(5,3+int(gen/16)), exacity=int(gen/3+1))
loss = self.trainModel(model, calcDepth=min(4,3+int(gen/16)), exacity=int(gen/3+1))
print('[L] '+str(loss))
self.universe.scoreProvider = 'neural'
self.saveModel(model)
self.saveModel(model, gen)
def saveModel(self, model):
torch.save(model.state_dict(), 'brains/uttt.pth')
def saveModel(self, model, gen):
dat = model.state_dict()
with open(self.getModelFileName(), 'wb') as f:
pickle.dump((gen, dat), f)
def loadModelState(self, model):
with open(self.getModelFileName(), 'rb') as f:
gen, dat = pickle.load(f)
model.load_state_dict(dat)
model.eval()
return gen
def loadModel(self):
model = self.rootNode.state.getModel()
gen = self.loadModelState(model)
return model, gen
def train(self):
model = self.rootNode.state.getModel()
model.load_state_dict(torch.load('brains/uttt.pth'))
model.eval()
self.main(model, startGen=0)
if os.path.exists(self.getModelFileName()):
model, gen = self.loadModel()
self.main(model, startGen=gen+1)
else:
self.main()
def getModelFileName(self):
return 'brains/utt.vac'
def trainFromTerm(self, term):
model = self.rootNode.state.getModel()
model.load_state_dict(torch.load('brains/uttt.pth'))
model.load_state_dict(torch.load('brains/uttt.vac'))
model.eval()
self.universe.scoreProvider = 'neural'
self.trainModel(model, calcDepth=4, exacity=10, term=term)
self.saveModel(model)
def saveToMemoryBank(self, term):
return
with open('memoryBank/uttt/'+datetime.datetime.now().strftime('%Y-%m-%d_%H:%M:%S')+'_'+str(int(random.random()*99999))+'.vdm', 'wb') as f:
pickle.dump(term, f)