1:0 against kenria Booyaa

This commit is contained in:
Dominik Moritz Roth 2022-04-15 11:18:34 +02:00
parent 6cc2d84519
commit d164a59e31
3 changed files with 44 additions and 27 deletions

Binary file not shown.

View File

@ -141,40 +141,47 @@ class Model(nn.Module):
def __init__(self):
super().__init__()
self.smolChan = 12
self.compChan = 7
self.smol = nn.Sequential(
nn.Conv2d(
in_channels=1,
out_channels=self.smolChan,
out_channels=24,
kernel_size=(3,3),
stride=3,
padding=0,
),
nn.ReLU()
)
self.big = nn.Sequential(
nn.Linear(self.smolChan*9, self.compChan),
#nn.ReLU(),
#nn.Linear(self.compChan, 1),
self.comb = nn.Sequential(
nn.Conv1d(
in_channels=24,
out_channels=8,
kernel_size=1,
stride=1,
padding=0,
),
nn.ReLU()
)
self.out = nn.Sequential(
nn.Linear(9*8, 32),
nn.ReLU(),
nn.Linear(self.compChan, 3),
nn.Linear(32, 8),
nn.ReLU(),
nn.Linear(3, 1),
nn.Linear(8, 1),
nn.Sigmoid()
)
def forward(self, x):
x = torch.reshape(x, (1,9,9))
x = self.smol(x)
x = torch.reshape(x, (self.smolChan*9,))
y = self.big(x)
x = torch.reshape(x, (24,9))
x = self.comb(x)
x = torch.reshape(x, (-1,))
y = self.out(x)
return y
if __name__=="__main__":
run = NeuralRuntime(TTTState())
run.game(None, 4)
run.game([0,1], 4)
trainer = Trainer(TTTState())
trainer.train()
#trainer = Trainer(TTTState())
#trainer.train()

View File

@ -11,6 +11,7 @@ from threading import Event
from queue import PriorityQueue, Empty
from dataclasses import dataclass, field
from typing import Any
import random
class Action():
# Should hold the data representing an action
@ -388,6 +389,7 @@ class Runtime():
def __init__(self, initState):
universe = QueueingUniverse()
self.head = Node(initState, universe = universe)
_ = self.head.childs
universe.newOpen(self.head)
def spawnWorker(self):
@ -460,9 +462,9 @@ class Trainer(Runtime):
self.rootNode = Node(initState, universe = self.universe)
self.terminal = None
def buildDatasetFromModel(self, model, depth=4, refining=True):
def buildDatasetFromModel(self, model, depth=4, refining=True, exacity=5):
print('[*] Building Timeline')
term = self.linearPlay(model, calcDepth=depth)
term = self.linearPlay(model, calcDepth=depth, exacity=exacity)
if refining:
print('[*] Refining Timeline')
self.fanOut(term, depth=depth+1)
@ -475,7 +477,7 @@ class Trainer(Runtime):
head = head.parent
head.forceStrong(depth)
def linearPlay(self, model, calcDepth=7, verbose=True):
def linearPlay(self, model, calcDepth=7, exacity=5, verbose=True):
head = self.rootNode
self.universe.model = model
while head.getWinner()==None:
@ -490,7 +492,10 @@ class Trainer(Runtime):
for c in head.childs:
opts.append((c, c.getStrongFor(head.curPlayer)))
opts.sort(key=lambda x: x[1])
ind = int(pow(random.random(),5)*(len(opts)-1))
if exacity >= 10:
ind = 0
else:
ind = int(pow(random.random(),exacity)*(len(opts)-1))
head = opts[ind][0]
print('')
return head
@ -499,16 +504,20 @@ class Trainer(Runtime):
head = term
while True:
yield head
if len(head.childs):
yield random.choice(head.childs)
if head.parent == None:
return
head = head.parent
def trainModel(self, model, lr=0.01, cut=0.01, calcDepth=4):
def trainModel(self, model, lr=0.00005, cut=0.01, calcDepth=4, exacity=5):
loss_func = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr)
term = self.buildDatasetFromModel(model, depth=calcDepth)
term = self.buildDatasetFromModel(model, depth=calcDepth, exacity=exacity)
print('[*] Conditioning Brain...')
for r in range(64):
loss_sum = 0
lLoss = 0
zeroLen = 0
for i, node in enumerate(self.timelineIter(term)):
for p in range(self.rootNode.playersNum):
@ -524,19 +533,20 @@ class Trainer(Runtime):
zeroLen+=1
if zeroLen == 5:
break
print(loss_sum/i)
if loss_sum/i < cut:
#print(loss_sum/i)
if r > 16 and (loss_sum/i < cut or lLoss == loss_sum):
return
lLoss = loss_sum
def main(self, model=None, gens=64):
def main(self, model=None, gens=1024, startGen=12):
newModel = False
if model==None:
newModel = True
model = self.rootNode.state.getModel()
self.universe.scoreProvider = ['neural','naive'][newModel]
for gen in range(gens):
for gen in range(startGen, startGen+gens):
print('[#####] Gen '+str(gen)+' training:')
self.trainModel(model, calcDepth=3)
self.trainModel(model, calcDepth=min(5,3+int(gen/16)), exacity=int(gen/3+1))
self.universe.scoreProvider = 'neural'
torch.save(model.state_dict(), 'brains/uttt.pth')
@ -544,4 +554,4 @@ class Trainer(Runtime):
model = self.rootNode.state.getModel()
model.load_state_dict(torch.load('brains/uttt.pth'))
model.eval()
self.main(model)
self.main(model, startGen=0)