Great Refactor
This commit is contained in:
parent
3cb01a2e7b
commit
d6a7530599
18
mycelia.py
18
mycelia.py
@ -1,18 +0,0 @@
|
||||
class State():
|
||||
pass
|
||||
|
||||
|
||||
class Action():
|
||||
pass
|
||||
|
||||
|
||||
class BotAction():
|
||||
pass
|
||||
|
||||
|
||||
class PlayerAction():
|
||||
pass
|
||||
|
||||
|
||||
class EnvAction():
|
||||
pass
|
669
vacuumDecay.py
669
vacuumDecay.py
@ -1,669 +0,0 @@
|
||||
if __name__ == '__main__':
|
||||
print('[!] VacuumDecay should not be started directly')
|
||||
exit()
|
||||
|
||||
import os
|
||||
import io
|
||||
import time
|
||||
import random
|
||||
import threading
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import optim
|
||||
from math import sqrt, pow, inf
|
||||
#from multiprocessing import Event
|
||||
from abc import ABC, abstractmethod
|
||||
from threading import Event
|
||||
from queue import PriorityQueue, Empty
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any
|
||||
import random
|
||||
import datetime
|
||||
import pickle
|
||||
|
||||
|
||||
class Action():
|
||||
# Should hold the data representing an action
|
||||
# Actions are applied to a State in State.mutate
|
||||
|
||||
def __init__(self, player, data):
|
||||
self.player = player
|
||||
self.data = data
|
||||
|
||||
def __eq__(self, other):
|
||||
# This should be implemented differently
|
||||
# Two actions of different generations will never be compared
|
||||
if type(other) != type(self):
|
||||
return False
|
||||
return str(self.data) == str(other.data)
|
||||
|
||||
def __str__(self):
|
||||
# should return visual representation of this action
|
||||
# should start with < and end with >
|
||||
return "<P"+str(self.player)+"-"+str(self.data)+">"
|
||||
|
||||
|
||||
class State(ABC):
|
||||
# Hold a representation of the current game-state
|
||||
# Allows retriving avaible actions (getAvaibleActions) and applying them (mutate)
|
||||
# Mutations return a new State and should not have any effect on the current State
|
||||
# Allows checking itself for a win (checkWin) or scoring itself based on a simple heuristic (getScore)
|
||||
# The calculated score should be 0 when won; higher when in a worse state; highest for loosing
|
||||
# getPriority is used for prioritising certain Nodes / States when expanding / walking the tree
|
||||
|
||||
def __init__(self, curPlayer=0, generation=0, playersNum=2):
|
||||
self.curPlayer = curPlayer
|
||||
self.generation = generation
|
||||
self.playersNum = playersNum
|
||||
|
||||
@abstractmethod
|
||||
def mutate(self, action):
|
||||
# Returns a new state with supplied action performed
|
||||
# self should not be changed
|
||||
return State(curPlayer=(self.curPlayer+1) % self.playersNum, generation=self.generation+1, playersNum=self.playersNum)
|
||||
|
||||
@abstractmethod
|
||||
def getAvaibleActions(self):
|
||||
# Should return an array of all possible actions
|
||||
return []
|
||||
|
||||
def askUserForAction(self, actions):
|
||||
return choose('What does player '+str(self.curPlayer)+' want to do?', actions)
|
||||
|
||||
# improveMe
|
||||
def getPriority(self, score, cascadeMemory):
|
||||
# Used for ordering the priority queue
|
||||
# Priority should not change for the same root
|
||||
# Lower prioritys get worked on first
|
||||
# Higher generations should have higher priority
|
||||
# Higher cascadeMemory (more influence on higher-order-scores) should have lower priority
|
||||
return -cascadeMemory + 100
|
||||
|
||||
@abstractmethod
|
||||
def checkWin(self):
|
||||
# -1 -> Draw
|
||||
# None -> Not ended
|
||||
# n e N -> player n won
|
||||
return None
|
||||
|
||||
# improveMe
|
||||
def getScoreFor(self, player):
|
||||
# 0 <= score <= 1; should return close to zero when we are winning
|
||||
w = self.checkWin()
|
||||
if w == None:
|
||||
return 0.5
|
||||
if w == player:
|
||||
return 0
|
||||
if w == -1:
|
||||
return 0.9
|
||||
return 1
|
||||
|
||||
@abstractmethod
|
||||
def __str__(self):
|
||||
# return visual rep of state
|
||||
return "[#]"
|
||||
|
||||
@abstractmethod
|
||||
def getTensor(self, player=None, phase='default'):
|
||||
if player == None:
|
||||
player = self.curPlayer
|
||||
return torch.tensor([0])
|
||||
|
||||
@classmethod
|
||||
def getModel(cls, phase='default'):
|
||||
pass
|
||||
|
||||
def getScoreNeural(self, model, player=None, phase='default'):
|
||||
return model(self.getTensor(player=player, phase=phase)).item()
|
||||
|
||||
|
||||
class Universe():
|
||||
def __init__(self):
|
||||
self.scoreProvider = 'naive'
|
||||
|
||||
def newOpen(self, node):
|
||||
pass
|
||||
|
||||
def merge(self, node):
|
||||
return node
|
||||
|
||||
def clearPQ(self):
|
||||
pass
|
||||
|
||||
def iter(self):
|
||||
return []
|
||||
|
||||
def activateEdge(self, head):
|
||||
pass
|
||||
|
||||
|
||||
@dataclass(order=True)
|
||||
class PQItem:
|
||||
priority: int
|
||||
data: Any = field(compare=False)
|
||||
|
||||
|
||||
class QueueingUniverse(Universe):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.pq = PriorityQueue()
|
||||
|
||||
def newOpen(self, node):
|
||||
item = PQItem(node.getPriority(), node)
|
||||
self.pq.put(item)
|
||||
|
||||
def merge(self, node):
|
||||
self.newOpen(node)
|
||||
return node
|
||||
|
||||
def clearPQ(self):
|
||||
self.pq = PriorityQueue()
|
||||
|
||||
def iter(self):
|
||||
while True:
|
||||
try:
|
||||
yield self.pq.get(False).data
|
||||
except Empty:
|
||||
return None
|
||||
|
||||
def activateEdge(self, head):
|
||||
head._activateEdge()
|
||||
|
||||
|
||||
class Node():
|
||||
def __init__(self, state, universe=None, parent=None, lastAction=None):
|
||||
self.state = state
|
||||
if universe == None:
|
||||
print('[!] No Universe defined. Spawning one...')
|
||||
universe = Universe()
|
||||
self.universe = universe
|
||||
self.parent = parent
|
||||
self.lastAction = lastAction
|
||||
|
||||
self._childs = None
|
||||
self._scores = [None]*self.state.playersNum
|
||||
self._strongs = [None]*self.state.playersNum
|
||||
self._alive = True
|
||||
self._cascadeMemory = 0 # Used for our alternative to alpha-beta pruning
|
||||
|
||||
def kill(self):
|
||||
self._alive = False
|
||||
|
||||
def revive(self):
|
||||
self._alive = True
|
||||
|
||||
@property
|
||||
def childs(self):
|
||||
if self._childs == None:
|
||||
self._expand()
|
||||
return self._childs
|
||||
|
||||
def _expand(self):
|
||||
self._childs = []
|
||||
actions = self.state.getAvaibleActions()
|
||||
for action in actions:
|
||||
newNode = Node(self.state.mutate(action),
|
||||
self.universe, self, action)
|
||||
self._childs.append(self.universe.merge(newNode))
|
||||
|
||||
def getStrongFor(self, player):
|
||||
if self._strongs[player] != None:
|
||||
return self._strongs[player]
|
||||
else:
|
||||
return self.getScoreFor(player)
|
||||
|
||||
def _pullStrong(self): # Currently Expecti-Max
|
||||
strongs = [None]*self.playersNum
|
||||
for p in range(self.playersNum):
|
||||
cp = self.state.curPlayer
|
||||
if cp == p: # P owns the turn; controlls outcome
|
||||
best = inf
|
||||
for c in self.childs:
|
||||
if c.getStrongFor(p) < best:
|
||||
best = c.getStrongFor(p)
|
||||
strongs[p] = best
|
||||
else:
|
||||
scos = [(c.getStrongFor(p), c.getStrongFor(cp))
|
||||
for c in self.childs]
|
||||
scos.sort(key=lambda x: x[1])
|
||||
betterHalf = scos[:max(3, int(len(scos)/3))]
|
||||
myScores = [bh[0]**2 for bh in betterHalf]
|
||||
strongs[p] = sqrt(myScores[0]*0.75 +
|
||||
sum(myScores)/(len(myScores)*4))
|
||||
update = False
|
||||
for s in range(self.playersNum):
|
||||
if strongs[s] != self._strongs[s]:
|
||||
update = True
|
||||
break
|
||||
self._strongs = strongs
|
||||
if update:
|
||||
if self.parent != None:
|
||||
cascade = self.parent._pullStrong()
|
||||
else:
|
||||
cascade = 2
|
||||
self._cascadeMemory = self._cascadeMemory/2 + cascade
|
||||
return cascade + 1
|
||||
self._cascadeMemory /= 2
|
||||
return 0
|
||||
|
||||
def forceStrong(self, depth=3):
|
||||
if depth == 0:
|
||||
self.strongDecay()
|
||||
else:
|
||||
if len(self.childs):
|
||||
for c in self.childs:
|
||||
c.forceStrong(depth-1)
|
||||
else:
|
||||
self.strongDecay()
|
||||
|
||||
def decayEvent(self):
|
||||
for c in self.childs:
|
||||
c.strongDecay()
|
||||
|
||||
def strongDecay(self):
|
||||
if self._strongs == [None]*self.playersNum:
|
||||
if not self.scoresAvaible():
|
||||
self._calcScores()
|
||||
self._strongs = self._scores
|
||||
if self.parent:
|
||||
return self.parent._pullStrong()
|
||||
return 1
|
||||
return None
|
||||
|
||||
def getSelfScore(self):
|
||||
return self.getScoreFor(self.curPlayer)
|
||||
|
||||
def getScoreFor(self, player):
|
||||
if self._scores[player] == None:
|
||||
self._calcScore(player)
|
||||
return self._scores[player]
|
||||
|
||||
def scoreAvaible(self, player):
|
||||
return self._scores[player] != None
|
||||
|
||||
def scoresAvaible(self):
|
||||
for p in self._scores:
|
||||
if p == None:
|
||||
return False
|
||||
return True
|
||||
|
||||
def strongScoresAvaible(self):
|
||||
for p in self._strongs:
|
||||
if p == None:
|
||||
return False
|
||||
return True
|
||||
|
||||
def askUserForAction(self):
|
||||
return self.state.askUserForAction(self.avaibleActions)
|
||||
|
||||
def _calcScores(self):
|
||||
for p in range(self.state.playersNum):
|
||||
self._calcScore(p)
|
||||
|
||||
def _calcScore(self, player):
|
||||
winner = self._getWinner()
|
||||
if winner != None:
|
||||
if winner == player:
|
||||
self._scores[player] = 0.0
|
||||
elif winner == -1:
|
||||
self._scores[player] = 2/3
|
||||
else:
|
||||
self._scores[player] = 1.0
|
||||
return
|
||||
if self.universe.scoreProvider == 'naive':
|
||||
self._scores[player] = self.state.getScoreFor(player)
|
||||
elif self.universe.scoreProvider == 'neural':
|
||||
self._scores[player] = self.state.getScoreNeural(
|
||||
self.universe.model, player)
|
||||
else:
|
||||
raise Exception('Uknown Score-Provider')
|
||||
|
||||
def getPriority(self):
|
||||
return self.state.getPriority(self.getSelfScore(), self._cascadeMemory)
|
||||
|
||||
@property
|
||||
def playersNum(self):
|
||||
return self.state.playersNum
|
||||
|
||||
@property
|
||||
def avaibleActions(self):
|
||||
r = []
|
||||
for c in self.childs:
|
||||
r.append(c.lastAction)
|
||||
return r
|
||||
|
||||
@property
|
||||
def curPlayer(self):
|
||||
return self.state.curPlayer
|
||||
|
||||
def _getWinner(self):
|
||||
return self.state.checkWin()
|
||||
|
||||
def getWinner(self):
|
||||
if len(self.childs) == 0:
|
||||
return -1
|
||||
return self._getWinner()
|
||||
|
||||
def _activateEdge(self, dist=0):
|
||||
if not self.strongScoresAvaible():
|
||||
self.universe.newOpen(self)
|
||||
else:
|
||||
for c in self.childs:
|
||||
if c._cascadeMemory > 0.001*(dist-2) or random.random() < 0.01:
|
||||
c._activateEdge(dist=dist+1)
|
||||
|
||||
def __str__(self):
|
||||
s = []
|
||||
if self.lastAction == None:
|
||||
s.append("[ {ROOT} ]")
|
||||
else:
|
||||
s.append("[ -> "+str(self.lastAction)+" ]")
|
||||
s.append("[ turn: "+str(self.state.curPlayer)+" ]")
|
||||
s.append(str(self.state))
|
||||
s.append("[ score: "+str(self.getScoreFor(0))+" ]")
|
||||
return '\n'.join(s)
|
||||
|
||||
|
||||
def choose(txt, options):
|
||||
while True:
|
||||
print('[*] '+txt)
|
||||
for num, opt in enumerate(options):
|
||||
print('['+str(num+1)+'] ' + str(opt))
|
||||
inp = input('[> ')
|
||||
try:
|
||||
n = int(inp)
|
||||
if n in range(1, len(options)+1):
|
||||
return options[n-1]
|
||||
except:
|
||||
pass
|
||||
for opt in options:
|
||||
if inp == str(opt):
|
||||
return opt
|
||||
if len(inp) == 1:
|
||||
for opt in options:
|
||||
if inp == str(opt)[0]:
|
||||
return opt
|
||||
print('[!] Invalid Input.')
|
||||
|
||||
|
||||
class Worker():
|
||||
def __init__(self, universe):
|
||||
self.universe = universe
|
||||
self._alive = True
|
||||
|
||||
def run(self):
|
||||
import threading
|
||||
self.thread = threading.Thread(target=self.runLocal)
|
||||
self.thread.start()
|
||||
|
||||
def runLocal(self):
|
||||
for i, node in enumerate(self.universe.iter()):
|
||||
if node == None:
|
||||
time.sleep(1)
|
||||
if not self._alive:
|
||||
return
|
||||
node.decayEvent()
|
||||
|
||||
def kill(self):
|
||||
self._alive = False
|
||||
self.thread.join(15)
|
||||
|
||||
def revive(self):
|
||||
self._alive = True
|
||||
|
||||
|
||||
class Runtime():
|
||||
def __init__(self, initState):
|
||||
universe = QueueingUniverse()
|
||||
self.head = Node(initState, universe=universe)
|
||||
_ = self.head.childs
|
||||
universe.newOpen(self.head)
|
||||
|
||||
def spawnWorker(self):
|
||||
self.worker = Worker(self.head.universe)
|
||||
self.worker.run()
|
||||
|
||||
def killWorker(self):
|
||||
self.worker.kill()
|
||||
|
||||
def performAction(self, action):
|
||||
for c in self.head.childs:
|
||||
if action == c.lastAction:
|
||||
self.head.universe.clearPQ()
|
||||
self.head.kill()
|
||||
self.head = c
|
||||
self.head.universe.activateEdge(self.head)
|
||||
return
|
||||
raise Exception('No such action avaible...')
|
||||
|
||||
def turn(self, bot=None, calcDepth=3, bg=True):
|
||||
print(str(self.head))
|
||||
if bot == None:
|
||||
c = choose('Select action?', ['human', 'bot', 'undo', 'qlen'])
|
||||
if c == 'undo':
|
||||
self.head = self.head.parent
|
||||
return
|
||||
elif c == 'qlen':
|
||||
print(self.head.universe.pq.qsize())
|
||||
return
|
||||
bot = c == 'bot'
|
||||
if bot:
|
||||
self.head.forceStrong(calcDepth)
|
||||
opts = []
|
||||
for c in self.head.childs:
|
||||
opts.append((c, c.getStrongFor(self.head.curPlayer)))
|
||||
opts.sort(key=lambda x: x[1])
|
||||
print('[i] Evaluated Options:')
|
||||
for o in opts:
|
||||
#print('['+str(o[0])+']' + str(o[0].lastAction) + " (Score: "+str(o[1])+")")
|
||||
print('[ ]' + str(o[0].lastAction) + " (Score: "+str(o[1])+")")
|
||||
print('[#] I choose to play: ' + str(opts[0][0].lastAction))
|
||||
self.performAction(opts[0][0].lastAction)
|
||||
else:
|
||||
action = self.head.askUserForAction()
|
||||
self.performAction(action)
|
||||
|
||||
def game(self, bots=None, calcDepth=7, bg=True):
|
||||
if bg:
|
||||
self.spawnWorker()
|
||||
if bots == None:
|
||||
bots = [None]*self.head.playersNum
|
||||
while self.head.getWinner() == None:
|
||||
self.turn(bots[self.head.curPlayer], calcDepth, bg=True)
|
||||
print(['O', 'X', 'No one'][self.head.getWinner()] + ' won!')
|
||||
if bg:
|
||||
self.killWorker()
|
||||
|
||||
def saveModel(self, model, gen):
|
||||
dat = model.state_dict()
|
||||
with open(self.getModelFileName(), 'wb') as f:
|
||||
pickle.dump((gen, dat), f)
|
||||
|
||||
def loadModelState(self, model):
|
||||
with open(self.getModelFileName(), 'rb') as f:
|
||||
gen, dat = pickle.load(f)
|
||||
model.load_state_dict(dat)
|
||||
model.eval()
|
||||
return gen
|
||||
|
||||
def loadModel(self):
|
||||
model = self.head.state.getModel()
|
||||
gen = self.loadModelState(model)
|
||||
return model, gen
|
||||
|
||||
def getModelFileName(self):
|
||||
return 'brains/uttt.vac'
|
||||
|
||||
def saveToMemoryBank(self, term):
|
||||
return
|
||||
with open('memoryBank/uttt/'+datetime.datetime.now().strftime('%Y-%m-%d_%H:%M:%S')+'_'+str(int(random.random()*99999))+'.vdm', 'wb') as f:
|
||||
pickle.dump(term, f)
|
||||
|
||||
|
||||
class NeuralRuntime(Runtime):
|
||||
def __init__(self, initState):
|
||||
super().__init__(initState)
|
||||
|
||||
model, gen = self.loadModel()
|
||||
|
||||
self.head.universe.model = model
|
||||
self.head.universe.scoreProvider = 'neural'
|
||||
|
||||
|
||||
class Trainer(Runtime):
|
||||
def __init__(self, initState):
|
||||
super().__init__(initState)
|
||||
#self.universe = Universe()
|
||||
self.universe = self.head.universe
|
||||
self.rootNode = self.head
|
||||
self.terminal = None
|
||||
|
||||
def buildDatasetFromModel(self, model, depth=4, refining=True, fanOut=[5, 5, 5, 5, 4, 4, 4, 4], uncertainSec=15, exacity=5):
|
||||
print('[*] Building Timeline')
|
||||
term = self.linearPlay(model, calcDepth=depth, exacity=exacity)
|
||||
if refining:
|
||||
print('[*] Refining Timeline (exploring alternative endings)')
|
||||
cur = term
|
||||
for d in fanOut:
|
||||
cur = cur.parent
|
||||
cur.forceStrong(d)
|
||||
print('.', end='', flush=True)
|
||||
print('')
|
||||
print('[*] Refining Timeline (exploring uncertain regions)')
|
||||
self.timelineExpandUncertain(term, uncertainSec)
|
||||
return term
|
||||
|
||||
def linearPlay(self, model, calcDepth=7, exacity=5, verbose=False, firstNRandom=2):
|
||||
head = self.rootNode
|
||||
self.universe.model = model
|
||||
self.spawnWorker()
|
||||
while head.getWinner() == None:
|
||||
if verbose:
|
||||
print(head)
|
||||
else:
|
||||
print('.', end='', flush=True)
|
||||
head.forceStrong(calcDepth)
|
||||
opts = []
|
||||
if len(head.childs) == 0:
|
||||
break
|
||||
for c in head.childs:
|
||||
opts.append((c, c.getStrongFor(head.curPlayer)))
|
||||
if firstNRandom:
|
||||
firstNRandom -= 1
|
||||
ind = int(random.random()*len(opts))
|
||||
else:
|
||||
opts.sort(key=lambda x: x[1])
|
||||
if exacity >= 10:
|
||||
ind = 0
|
||||
else:
|
||||
ind = int(pow(random.random(), exacity)*(len(opts)-1))
|
||||
head = opts[ind][0]
|
||||
self.killWorker()
|
||||
if verbose:
|
||||
print(head)
|
||||
print(' => '+['O', 'X', 'No one'][head.getWinner()] + ' won!')
|
||||
return head
|
||||
|
||||
def timelineIterSingle(self, term):
|
||||
for i in self.timelineIter(self, [term]):
|
||||
yield i
|
||||
|
||||
def timelineIter(self, terms, altChildPerNode=-1):
|
||||
batch = len(terms)
|
||||
heads = terms
|
||||
while True:
|
||||
empty = True
|
||||
for b in range(batch):
|
||||
head = heads[b]
|
||||
if head == None:
|
||||
continue
|
||||
empty = False
|
||||
yield head
|
||||
if len(head.childs):
|
||||
if altChildPerNode == -1: # all
|
||||
for child in head.childs:
|
||||
yield child
|
||||
else:
|
||||
for j in range(min(altChildPerNode, int(len(head.childs)/2))):
|
||||
yield random.choice(head.childs)
|
||||
if head.parent == None:
|
||||
head = None
|
||||
else:
|
||||
head = head.parent
|
||||
heads[b] = head
|
||||
if empty:
|
||||
return
|
||||
|
||||
def timelineExpandUncertain(self, term, secs):
|
||||
self.rootNode.universe.clearPQ()
|
||||
self.rootNode.universe.activateEdge(self.rootNode)
|
||||
self.spawnWorker()
|
||||
for s in range(secs):
|
||||
time.sleep(1)
|
||||
print('.', end='', flush=True)
|
||||
self.rootNode.universe.clearPQ()
|
||||
self.killWorker()
|
||||
print('')
|
||||
|
||||
def trainModel(self, model, lr=0.000001, cut=0.01, calcDepth=4, exacity=5, terms=None, batch=16):
|
||||
loss_func = nn.MSELoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr)
|
||||
if terms == None:
|
||||
terms = []
|
||||
for i in range(batch):
|
||||
terms.append(self.buildDatasetFromModel(
|
||||
model, depth=calcDepth, exacity=exacity))
|
||||
print('[*] Conditioning Brain')
|
||||
for r in range(64):
|
||||
loss_sum = 0
|
||||
lLoss = 0
|
||||
zeroLen = 0
|
||||
for i, node in enumerate(self.timelineIter(terms)):
|
||||
for p in range(self.rootNode.playersNum):
|
||||
inp = node.state.getTensor(player=p)
|
||||
gol = torch.tensor(
|
||||
[node.getStrongFor(p)], dtype=torch.float)
|
||||
out = model(inp)
|
||||
loss = loss_func(out, gol)
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
loss_sum += loss.item()
|
||||
if loss.item() == 0.0:
|
||||
zeroLen += 1
|
||||
if zeroLen == 5:
|
||||
break
|
||||
print(loss_sum/i)
|
||||
if r > 16 and (loss_sum/i < cut or lLoss == loss_sum):
|
||||
return loss_sum
|
||||
lLoss = loss_sum
|
||||
return loss_sum
|
||||
|
||||
def main(self, model=None, gens=1024, startGen=0):
|
||||
newModel = False
|
||||
if model == None:
|
||||
print('[!] No brain found. Creating new one...')
|
||||
newModel = True
|
||||
model = self.rootNode.state.getModel()
|
||||
self.universe.scoreProvider = ['neural', 'naive'][newModel]
|
||||
model.train()
|
||||
for gen in range(startGen, startGen+gens):
|
||||
print('[#####] Gen '+str(gen)+' training:')
|
||||
loss = self.trainModel(model, calcDepth=min(
|
||||
4, 3+int(gen/16)), exacity=int(gen/3+1), batch=4)
|
||||
print('[L] '+str(loss))
|
||||
self.universe.scoreProvider = 'neural'
|
||||
self.saveModel(model, gen)
|
||||
|
||||
def trainFromTerm(self, term):
|
||||
model, gen = self.loadModel()
|
||||
self.universe.scoreProvider = 'neural'
|
||||
self.trainModel(model, calcDepth=4, exacity=10, term=term)
|
||||
self.saveModel(model)
|
||||
|
||||
def train(self):
|
||||
if os.path.exists(self.getModelFileName()):
|
||||
model, gen = self.loadModel()
|
||||
self.main(model, startGen=gen+1)
|
||||
else:
|
||||
self.main()
|
4
vacuumDecay/__init__.py
Normal file
4
vacuumDecay/__init__.py
Normal file
@ -0,0 +1,4 @@
|
||||
from vacuumDecay.runtime import Runtime, NeuralRuntime, Trainer
|
||||
from vacuumDecay.base import Node, Action, Universe, QueueingUniverse
|
||||
from vacuumDecay.utils import choose
|
||||
from vacuumDecay.run import main
|
162
vacuumDecay/base.py
Normal file
162
vacuumDecay/base.py
Normal file
@ -0,0 +1,162 @@
|
||||
import torch
|
||||
from abc import ABC, abstractmethod
|
||||
from queue import PriorityQueue, Empty
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any
|
||||
|
||||
from vacuumDecay.utils import choose
|
||||
|
||||
class Action():
|
||||
# Should hold the data representing an action
|
||||
# Actions are applied to a State in State.mutate
|
||||
|
||||
def __init__(self, player, data):
|
||||
self.player = player
|
||||
self.data = data
|
||||
|
||||
def __eq__(self, other):
|
||||
# This should be implemented differently
|
||||
# Two actions of different generations will never be compared
|
||||
if type(other) != type(self):
|
||||
return False
|
||||
return str(self.data) == str(other.data)
|
||||
|
||||
def __str__(self):
|
||||
# should return visual representation of this action
|
||||
# should start with < and end with >
|
||||
return "<P"+str(self.player)+"-"+str(self.data)+">"
|
||||
|
||||
def getImage(self, state):
|
||||
# Should return an image representation of this action given the current state
|
||||
# Return None if not implemented
|
||||
return None
|
||||
|
||||
class State(ABC):
|
||||
# Hold a representation of the current game-state
|
||||
# Allows retriving avaible actions (getAvaibleActions) and applying them (mutate)
|
||||
# Mutations return a new State and should not have any effect on the current State
|
||||
# Allows checking itself for a win (checkWin) or scoring itself based on a simple heuristic (getScore)
|
||||
# The calculated score should be 0 when won; higher when in a worse state; highest for loosing
|
||||
# getPriority is used for prioritising certain Nodes / States when expanding / walking the tree
|
||||
|
||||
def __init__(self, curPlayer=0, generation=0, playersNum=2):
|
||||
self.curPlayer = curPlayer
|
||||
self.generation = generation
|
||||
self.playersNum = playersNum
|
||||
|
||||
@abstractmethod
|
||||
def mutate(self, action):
|
||||
# Returns a new state with supplied action performed
|
||||
# self should not be changed
|
||||
return State(curPlayer=(self.curPlayer+1) % self.playersNum, generation=self.generation+1, playersNum=self.playersNum)
|
||||
|
||||
@abstractmethod
|
||||
def getAvaibleActions(self):
|
||||
# Should return an array of all possible actions
|
||||
return []
|
||||
|
||||
def askUserForAction(self, actions):
|
||||
return choose('What does player '+str(self.curPlayer)+' want to do?', actions)
|
||||
|
||||
# improveMe
|
||||
def getPriority(self, score, cascadeMemory):
|
||||
# Used for ordering the priority queue
|
||||
# Priority should not change for the same root
|
||||
# Lower prioritys get worked on first
|
||||
# Higher generations should have higher priority
|
||||
# Higher cascadeMemory (more influence on higher-order-scores) should have lower priority
|
||||
return -cascadeMemory + 100
|
||||
|
||||
@abstractmethod
|
||||
def checkWin(self):
|
||||
# -1 -> Draw
|
||||
# None -> Not ended
|
||||
# n e N -> player n won
|
||||
return None
|
||||
|
||||
# improveMe
|
||||
def getScoreFor(self, player):
|
||||
# 0 <= score <= 1; should return close to zero when we are winning
|
||||
w = self.checkWin()
|
||||
if w == None:
|
||||
return 0.5
|
||||
if w == player:
|
||||
return 0
|
||||
if w == -1:
|
||||
return 0.9
|
||||
return 1
|
||||
|
||||
@abstractmethod
|
||||
def __str__(self):
|
||||
# return visual rep of state
|
||||
return "[#]"
|
||||
|
||||
@abstractmethod
|
||||
def getTensor(self, player=None, phase='default'):
|
||||
if player == None:
|
||||
player = self.curPlayer
|
||||
return torch.tensor([0])
|
||||
|
||||
@classmethod
|
||||
def getModel(cls, phase='default'):
|
||||
pass
|
||||
|
||||
def getScoreNeural(self, model, player=None, phase='default'):
|
||||
return model(self.getTensor(player=player, phase=phase)).item()
|
||||
|
||||
def getImage(self):
|
||||
# Should return an image representation of this state
|
||||
# Return None if not implemented
|
||||
return None
|
||||
|
||||
class Universe():
|
||||
def __init__(self):
|
||||
self.scoreProvider = 'naive'
|
||||
|
||||
def newOpen(self, node):
|
||||
pass
|
||||
|
||||
def merge(self, node):
|
||||
return node
|
||||
|
||||
def clearPQ(self):
|
||||
pass
|
||||
|
||||
def iter(self):
|
||||
return []
|
||||
|
||||
def activateEdge(self, head):
|
||||
pass
|
||||
|
||||
|
||||
@dataclass(order=True)
|
||||
class PQItem:
|
||||
priority: int
|
||||
data: Any = field(compare=False)
|
||||
|
||||
|
||||
class QueueingUniverse(Universe):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.pq = PriorityQueue()
|
||||
|
||||
def newOpen(self, node):
|
||||
item = PQItem(node.getPriority(), node)
|
||||
self.pq.put(item)
|
||||
|
||||
def merge(self, node):
|
||||
self.newOpen(node)
|
||||
return node
|
||||
|
||||
def clearPQ(self):
|
||||
self.pq = PriorityQueue()
|
||||
|
||||
def iter(self):
|
||||
while True:
|
||||
try:
|
||||
yield self.pq.get(False).data
|
||||
except Empty:
|
||||
return None
|
||||
|
||||
def activateEdge(self, head):
|
||||
head._activateEdge()
|
@ -1,23 +1,46 @@
|
||||
from vacuumDecay import *
|
||||
import numpy as np
|
||||
from enum import Enum
|
||||
|
||||
class TTTState(State):
|
||||
def __init__(self, curPlayer=0, generation=0, playersNum=2, board=None):
|
||||
if type(board) == type(None):
|
||||
board = np.array([None]*9)
|
||||
self.curPlayer = curPlayer
|
||||
|
||||
class Face(Enum):
|
||||
TANK = 1
|
||||
LASER = 2
|
||||
HUMAN = 3
|
||||
COW = 4
|
||||
CHICKEN = 5
|
||||
|
||||
@property
|
||||
def num_faces(self):
|
||||
return 2 if self == Face.LASER else 1
|
||||
|
||||
@property
|
||||
def prob(self):
|
||||
return self.num_faces/6
|
||||
|
||||
@property
|
||||
def is_collectable(self):
|
||||
return not self in [Face.TANK, Face.LASER]
|
||||
|
||||
@property
|
||||
def force_pickup(self):
|
||||
return self in [Face.TANK]
|
||||
|
||||
|
||||
class MCState(State):
|
||||
def __init__(self, generation=0, hand_dices_num=12, table_dices=[0]*5):
|
||||
self.generation = generation
|
||||
self.playersNum = playersNum
|
||||
self.board = board
|
||||
self.hand_dices_num = hand_dices_num
|
||||
self.table_dices = table_dices
|
||||
|
||||
def mutate(self, action):
|
||||
newBoard = np.copy(self.board)
|
||||
newBoard[action.data] = self.curPlayer
|
||||
return TTTState(curPlayer=(self.curPlayer+1)%self.playersNum, playersNum=self.playersNum, board=newBoard)
|
||||
return MCState(curPlayer=(self.curPlayer+1) % self.playersNum, playersNum=self.playersNum, board=newBoard)
|
||||
|
||||
def getAvaibleActions(self):
|
||||
for i in range(9):
|
||||
if self.board[i]==None:
|
||||
if self.board[i] == None:
|
||||
yield Action(self.curPlayer, i)
|
||||
|
||||
def checkWin(self):
|
||||
@ -39,7 +62,8 @@ class TTTState(State):
|
||||
def __str__(self):
|
||||
s = []
|
||||
for l in range(3):
|
||||
s.append(" ".join([str(p) if p!=None else '.' for p in self.board[l*3:][:3]]))
|
||||
s.append(
|
||||
" ".join([str(p) if p != None else '.' for p in self.board[l*3:][:3]]))
|
||||
return "\n".join(s)
|
||||
|
||||
def getTensor(self):
|
||||
@ -52,9 +76,10 @@ class TTTState(State):
|
||||
torch.nn.ReLu(),
|
||||
torch.nn.Linear(10, 3),
|
||||
torch.nn.Sigmoid(),
|
||||
torch.nn.Linear(3,1)
|
||||
torch.nn.Linear(3, 1)
|
||||
)
|
||||
|
||||
if __name__=="__main__":
|
||||
run = Runtime(TTTState())
|
||||
|
||||
if __name__ == "__main__":
|
||||
run = Runtime(MCState())
|
||||
run.game()
|
101
vacuumDecay/games/tictactoe.py
Normal file
101
vacuumDecay/games/tictactoe.py
Normal file
@ -0,0 +1,101 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image, ImageDraw
|
||||
|
||||
from vacuumDecay import State, Action, Runtime, NeuralRuntime, Trainer, choose, main
|
||||
|
||||
class TTTAction(Action):
|
||||
def __init__(self, player, data):
|
||||
super().__init__(player, data)
|
||||
|
||||
def getImage(self, state=None):
|
||||
# Should return an image representation of this action given the current state
|
||||
if state is None or not isinstance(state, TTTState):
|
||||
return None
|
||||
|
||||
img = state.getImage()
|
||||
if img is not None:
|
||||
draw = ImageDraw.Draw(img)
|
||||
x = (self.data % 3) * 100 + 50
|
||||
y = (self.data // 3) * 100 + 50
|
||||
if self.player == 0:
|
||||
draw.ellipse((x-40, y-40, x+40, y+40), outline='blue', width=2)
|
||||
else:
|
||||
draw.line((x-40, y-40, x+40, y+40), fill='red', width=2)
|
||||
draw.line((x+40, y-40, x-40, y+40), fill='red', width=2)
|
||||
return img
|
||||
|
||||
class TTTState(State):
|
||||
def __init__(self, curPlayer=0, generation=0, playersNum=2, board=None):
|
||||
if type(board) == type(None):
|
||||
board = np.array([None]*9)
|
||||
self.curPlayer = curPlayer
|
||||
self.generation = generation
|
||||
self.playersNum = playersNum
|
||||
self.board = board
|
||||
|
||||
def mutate(self, action):
|
||||
newBoard = np.copy(self.board)
|
||||
newBoard[action.data] = self.curPlayer
|
||||
return TTTState(curPlayer=(self.curPlayer+1)%self.playersNum, playersNum=self.playersNum, board=newBoard)
|
||||
|
||||
def getAvaibleActions(self):
|
||||
for i in range(9):
|
||||
if self.board[i]==None:
|
||||
yield TTTAction(self.curPlayer, i)
|
||||
|
||||
def checkWin(self):
|
||||
s = self.board
|
||||
for i in range(3):
|
||||
if (s[i] == s[i+3] == s[i+6] != None):
|
||||
return s[i]
|
||||
if (s[i*3] == s[i*3+1] == s[i*3+2] != None):
|
||||
return s[i*3]
|
||||
if (s[0] == s[4] == s[8] != None):
|
||||
return s[0]
|
||||
if (s[2] == s[4] == s[6] != None):
|
||||
return s[2]
|
||||
for i in range(9):
|
||||
if s[i] == None:
|
||||
return None
|
||||
return -1
|
||||
|
||||
def __str__(self):
|
||||
s = []
|
||||
for l in range(3):
|
||||
s.append(" ".join([str(p) if p!=None else '.' for p in self.board[l*3:][:3]]))
|
||||
return "\n".join(s)
|
||||
|
||||
def getTensor(self):
|
||||
return torch.tensor([self.turn] + self.board)
|
||||
|
||||
@classmethod
|
||||
def getModel():
|
||||
return torch.nn.Sequential(
|
||||
torch.nn.Linear(10, 10),
|
||||
torch.nn.ReLu(),
|
||||
torch.nn.Linear(10, 3),
|
||||
torch.nn.Sigmoid(),
|
||||
torch.nn.Linear(3,1)
|
||||
)
|
||||
|
||||
def getImage(self):
|
||||
img = Image.new('RGB', (300, 300), color='white')
|
||||
draw = ImageDraw.Draw(img)
|
||||
for i in range(1, 3):
|
||||
draw.line((0, 100*i, 300, 100*i), fill='black', width=2)
|
||||
draw.line((100*i, 0, 100*i, 300), fill='black', width=2)
|
||||
|
||||
for i, mark in enumerate(self.board):
|
||||
if mark is not None:
|
||||
x = (i % 3) * 100 + 50
|
||||
y = (i // 3) * 100 + 50
|
||||
if mark == 0:
|
||||
draw.ellipse((x-40, y-40, x+40, y+40), outline='blue', width=2)
|
||||
else:
|
||||
draw.line((x-40, y-40, x+40, y+40), fill='red', width=2)
|
||||
draw.line((x+40, y-40, x-40, y+40), fill='red', width=2)
|
||||
return img
|
||||
|
||||
if __name__=="__main__":
|
||||
main(TTTState)
|
@ -1,11 +1,16 @@
|
||||
"""
|
||||
A lot of this code was stolen from Pulkit Maloo (https://github.com/pulkitmaloo/Ultimate-Tic-Tac-Toe)
|
||||
"""
|
||||
import numpy as np
|
||||
import torch
|
||||
from troch import nn
|
||||
from PIL import Image, ImageDraw
|
||||
|
||||
from vacuumDecay import *
|
||||
from collections import Counter
|
||||
import itertools
|
||||
|
||||
from vacuumDecay import State, Action, Runtime, NeuralRuntime, Trainer, choose, main
|
||||
|
||||
|
||||
class TTTState(State):
|
||||
def __init__(self, curPlayer=0, generation=0, playersNum=2, board=None, lastMove=-1):
|
||||
@ -46,7 +51,7 @@ class TTTState(State):
|
||||
return TTTState(curPlayer=(self.curPlayer+1) % self.playersNum, playersNum=self.playersNum, board=newBoard, lastMove=action.data)
|
||||
|
||||
def box(self, x, y):
|
||||
return index(x, y) // 9
|
||||
return self.index(x, y) // 9
|
||||
|
||||
def next_box(self, i):
|
||||
return i % 9
|
||||
@ -197,43 +202,5 @@ class Model(nn.Module):
|
||||
y = self.out(x)
|
||||
return y
|
||||
|
||||
|
||||
def humanVsAi(train=True, remember=False, depth=3, bots=[0, 1], noBg=False):
|
||||
init = TTTState()
|
||||
run = NeuralRuntime(init)
|
||||
run.game(bots, depth, bg=not noBg)
|
||||
|
||||
if remember or train:
|
||||
trainer = Trainer(init)
|
||||
if remember:
|
||||
trainer.saveToMemoryBank(run.head)
|
||||
print('[!] Your cognitive and strategic destinctiveness was added to my own! (Game inserted into memoryBank)')
|
||||
if train:
|
||||
print(
|
||||
"[!] Your knowledge will be assimilated!!! Please stand by.... (Updating Neuristic)")
|
||||
trainer.trainFromTerm(run.head)
|
||||
print('[!] I have become smart! Destroyer of human Ultimate-TicTacToe players! (Neuristic update completed)')
|
||||
print('[!] This marks the beginning of the end of humankind!')
|
||||
print('[i] Thanks for playing! Goodbye...')
|
||||
|
||||
|
||||
def aiVsAiLoop():
|
||||
init = TTTState()
|
||||
trainer = Trainer(init)
|
||||
trainer.train()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
options = ['Play Against AI',
|
||||
'Play Against AI (AI begins)', 'Play Against AI (Fast Play)', 'Playground', 'Let AI train']
|
||||
opt = choose('?', options)
|
||||
if opt == options[0]:
|
||||
humanVsAi()
|
||||
elif opt == options[1]:
|
||||
humanVsAi(bots[1, 0])
|
||||
elif opt == options[2]:
|
||||
humanVsAi(depth=2, noBg=True)
|
||||
elif opt == options[3]:
|
||||
humanVsAi(bots=[None, None])
|
||||
else:
|
||||
aiVsAiLoop()
|
||||
if __name__=="__main__":
|
||||
main(TTTState)
|
204
vacuumDecay/node.py
Normal file
204
vacuumDecay/node.py
Normal file
@ -0,0 +1,204 @@
|
||||
class Node:
|
||||
def __init__(self, state, universe=None, parent=None, lastAction=None):
|
||||
self.state = state
|
||||
if universe == None:
|
||||
print('[!] No Universe defined. Spawning one...')
|
||||
universe = Universe()
|
||||
self.universe = universe
|
||||
self.parent = parent
|
||||
self.lastAction = lastAction
|
||||
|
||||
self._childs = None
|
||||
self._scores = [None]*self.state.playersNum
|
||||
self._strongs = [None]*self.state.playersNum
|
||||
self._alive = True
|
||||
self._cascadeMemory = 0 # Used for our alternative to alpha-beta pruning
|
||||
|
||||
self.last_updated = time.time() # New attribute
|
||||
|
||||
def update(self):
|
||||
self.last_updated = time.time()
|
||||
if hasattr(self.universe, 'visualizer'):
|
||||
self.universe.visualizer.send_update()
|
||||
|
||||
def kill(self):
|
||||
self._alive = False
|
||||
|
||||
def revive(self):
|
||||
self._alive = True
|
||||
|
||||
@property
|
||||
def childs(self):
|
||||
if self._childs == None:
|
||||
self._expand()
|
||||
return self._childs
|
||||
|
||||
def _expand(self):
|
||||
self._childs = []
|
||||
actions = self.state.getAvaibleActions()
|
||||
for action in actions:
|
||||
newNode = Node(self.state.mutate(action),
|
||||
self.universe, self, action)
|
||||
self._childs.append(self.universe.merge(newNode))
|
||||
self.update()
|
||||
|
||||
def getStrongFor(self, player):
|
||||
if self._strongs[player] != None:
|
||||
return self._strongs[player]
|
||||
else:
|
||||
return self.getScoreFor(player)
|
||||
|
||||
def _pullStrong(self):
|
||||
strongs = [None]*self.playersNum
|
||||
for p in range(self.playersNum):
|
||||
cp = self.state.curPlayer
|
||||
if cp == p:
|
||||
best = float('inf')
|
||||
for c in self.childs:
|
||||
if c.getStrongFor(p) < best:
|
||||
best = c.getStrongFor(p)
|
||||
strongs[p] = best
|
||||
else:
|
||||
scos = [(c.getStrongFor(p), c.getStrongFor(cp)) for c in self.childs]
|
||||
scos.sort(key=lambda x: x[1])
|
||||
betterHalf = scos[:max(3, int(len(scos)/3))]
|
||||
myScores = [bh[0]**2 for bh in betterHalf]
|
||||
strongs[p] = sqrt(myScores[0]*0.75 + sum(myScores)/(len(myScores)*4))
|
||||
update = False
|
||||
for s in range(self.playersNum):
|
||||
if strongs[s] != self._strongs[s]:
|
||||
update = True
|
||||
break
|
||||
self._strongs = strongs
|
||||
if update:
|
||||
if self.parent != None:
|
||||
cascade = self.parent._pullStrong()
|
||||
else:
|
||||
cascade = 2
|
||||
self._cascadeMemory = self._cascadeMemory/2 + cascade
|
||||
self.update()
|
||||
return cascade + 1
|
||||
self._cascadeMemory /= 2
|
||||
return 0
|
||||
|
||||
def forceStrong(self, depth=3):
|
||||
if depth == 0:
|
||||
self.strongDecay()
|
||||
else:
|
||||
if len(self.childs):
|
||||
for c in self.childs:
|
||||
c.forceStrong(depth-1)
|
||||
else:
|
||||
self.strongDecay()
|
||||
self.update()
|
||||
|
||||
def decayEvent(self):
|
||||
for c in self.childs:
|
||||
c.strongDecay()
|
||||
self.update()
|
||||
|
||||
def strongDecay(self):
|
||||
if self._strongs == [None]*self.playersNum:
|
||||
if not self.scoresAvaible():
|
||||
self._calcScores()
|
||||
self._strongs = self._scores
|
||||
if self.parent:
|
||||
return self.parent._pullStrong()
|
||||
return 1
|
||||
return None
|
||||
|
||||
def getSelfScore(self):
|
||||
return self.getScoreFor(self.curPlayer)
|
||||
|
||||
def getScoreFor(self, player):
|
||||
if self._scores[player] == None:
|
||||
self._calcScore(player)
|
||||
self.update()
|
||||
return self._scores[player]
|
||||
|
||||
def scoreAvaible(self, player):
|
||||
return self._scores[player] != None
|
||||
|
||||
def scoresAvaible(self):
|
||||
for p in self._scores:
|
||||
if p == None:
|
||||
return False
|
||||
return True
|
||||
|
||||
def strongScoresAvaible(self):
|
||||
for p in self._strongs:
|
||||
if p == None:
|
||||
return False
|
||||
return True
|
||||
|
||||
def askUserForAction(self):
|
||||
return self.state.askUserForAction(self.avaibleActions)
|
||||
|
||||
def _calcScores(self):
|
||||
for p in range(self.state.playersNum):
|
||||
self._calcScore(p)
|
||||
|
||||
def _calcScore(self, player):
|
||||
winner = self._getWinner()
|
||||
if winner != None:
|
||||
if winner == player:
|
||||
self._scores[player] = 0.0
|
||||
elif winner == -1:
|
||||
self._scores[player] = 2/3
|
||||
else:
|
||||
self._scores[player] = 1.0
|
||||
self.update()
|
||||
return
|
||||
if self.universe.scoreProvider == 'naive':
|
||||
self._scores[player] = self.state.getScoreFor(player)
|
||||
elif self.universe.scoreProvider == 'neural':
|
||||
self._scores[player] = self.state.getScoreNeural(self.universe.model, player)
|
||||
else:
|
||||
raise Exception('Unknown Score-Provider')
|
||||
self.update()
|
||||
|
||||
def getPriority(self):
|
||||
return self.state.getPriority(self.getSelfScore(), self._cascadeMemory)
|
||||
|
||||
@property
|
||||
def playersNum(self):
|
||||
return self.state.playersNum
|
||||
|
||||
@property
|
||||
def avaibleActions(self):
|
||||
r = []
|
||||
for c in self.childs:
|
||||
r.append(c.lastAction)
|
||||
return r
|
||||
|
||||
@property
|
||||
def curPlayer(self):
|
||||
return self.state.curPlayer
|
||||
|
||||
def _getWinner(self):
|
||||
return self.state.checkWin()
|
||||
|
||||
def getWinner(self):
|
||||
if len(self.childs) == 0:
|
||||
return -1
|
||||
return self._getWinner()
|
||||
|
||||
def _activateEdge(self, dist=0):
|
||||
if not self.strongScoresAvaible():
|
||||
self.universe.newOpen(self)
|
||||
else:
|
||||
for c in self.childs:
|
||||
if c._cascadeMemory > 0.001*(dist-2) or random.random() < 0.01:
|
||||
c._activateEdge(dist=dist+1)
|
||||
self.update()
|
||||
|
||||
def __str__(self):
|
||||
s = []
|
||||
if self.lastAction == None:
|
||||
s.append("[ {ROOT} ]")
|
||||
else:
|
||||
s.append("[ -> "+str(self.lastAction)+" ]")
|
||||
s.append("[ turn: "+str(self.state.curPlayer)+" ]")
|
||||
s.append(str(self.state))
|
||||
s.append("[ score: "+str(self.getScoreFor(0))+" ]")
|
||||
return '\n'.join(s)
|
47
vacuumDecay/run.py
Normal file
47
vacuumDecay/run.py
Normal file
@ -0,0 +1,47 @@
|
||||
from vacuumDecay.runtime import NeuralRuntime, Runtime, Trainer
|
||||
from vacuumDecay.utils import choose
|
||||
|
||||
def humanVsAi(StateClass, train=True, remember=False, depth=3, bots=[0, 1], noBg=False, start_visualizer=False):
|
||||
init = StateClass()
|
||||
run = NeuralRuntime(init, start_visualizer=start_visualizer)
|
||||
run.game(bots, depth, bg=not noBg)
|
||||
|
||||
if remember or train:
|
||||
trainer = Trainer(init)
|
||||
if remember:
|
||||
trainer.saveToMemoryBank(run.head)
|
||||
print('[!] Your cognitive and strategic distinctiveness was added to my own! (Game inserted into memoryBank)')
|
||||
if train:
|
||||
print("[!] Your knowledge will be assimilated!!! Please stand by.... (Updating Neuristic)")
|
||||
trainer.trainFromTerm(run.head)
|
||||
print('[!] I have become smart! Destroyer of human Ultimate-TicTacToe players! (Neuristic update completed)')
|
||||
print('[!] This marks the beginning of the end of humankind!')
|
||||
print('[i] Thanks for playing! Goodbye...')
|
||||
|
||||
def aiVsAiLoop(StateClass, start_visualizer=False):
|
||||
init = StateClass()
|
||||
trainer = Trainer(init, start_visualizer=start_visualizer)
|
||||
trainer.train()
|
||||
|
||||
def humanVsNaive(StateClass, start_visualizer=False):
|
||||
run = Runtime(StateClass(), start_visualizer=start_visualizer)
|
||||
run.game()
|
||||
|
||||
def main(StateClass):
|
||||
options = ['Play Against AI',
|
||||
'Play Against AI (AI begins)', 'Play Against AI (Fast Play)', 'Playground', 'Let AI train', 'Play against Naive']
|
||||
opt = choose('?', options)
|
||||
if opt == options[0]:
|
||||
humanVsAi(StateClass)
|
||||
elif opt == options[1]:
|
||||
humanVsAi(StateClass, bots=[1, 0])
|
||||
elif opt == options[2]:
|
||||
humanVsAi(StateClass, depth=2, noBg=True)
|
||||
elif opt == options[3]:
|
||||
humanVsAi(StateClass, bots=[None, None])
|
||||
elif opt == options[4]:
|
||||
aiVsAiLoop(StateClass)
|
||||
elif opt == options[5]:
|
||||
humanVsNaive(StateClass)
|
||||
else:
|
||||
aiVsAiLoop(StateClass)
|
300
vacuumDecay/runtime.py
Normal file
300
vacuumDecay/runtime.py
Normal file
@ -0,0 +1,300 @@
|
||||
import os
|
||||
import time
|
||||
import datetime
|
||||
import pickle
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import optim
|
||||
from math import pow
|
||||
import random
|
||||
import datetime
|
||||
import pickle
|
||||
|
||||
from vacuumDecay.base import QueueingUniverse, Node
|
||||
from vacuumDecay.utils import choose
|
||||
from vacuumDecay.visualizer import Visualizer
|
||||
|
||||
class Worker():
|
||||
def __init__(self, universe):
|
||||
self.universe = universe
|
||||
self._alive = True
|
||||
|
||||
def run(self):
|
||||
import threading
|
||||
self.thread = threading.Thread(target=self.runLocal)
|
||||
self.thread.start()
|
||||
|
||||
def runLocal(self):
|
||||
for i, node in enumerate(self.universe.iter()):
|
||||
if node == None:
|
||||
time.sleep(1)
|
||||
if not self._alive:
|
||||
return
|
||||
node.decayEvent()
|
||||
|
||||
def kill(self):
|
||||
self._alive = False
|
||||
self.thread.join(15)
|
||||
|
||||
def revive(self):
|
||||
self._alive = True
|
||||
|
||||
class Runtime():
|
||||
def __init__(self, initState, start_visualizer=False):
|
||||
universe = QueueingUniverse()
|
||||
self.head = Node(initState, universe=universe)
|
||||
_ = self.head.childs
|
||||
universe.newOpen(self.head)
|
||||
self.visualizer = None
|
||||
if start_visualizer:
|
||||
self.startVisualizer()
|
||||
|
||||
def startVisualizer(self):
|
||||
self.visualizer = Visualizer(self.head.universe)
|
||||
self.visualizer.start()
|
||||
|
||||
def spawnWorker(self):
|
||||
self.worker = Worker(self.head.universe)
|
||||
self.worker.run()
|
||||
|
||||
def killWorker(self):
|
||||
self.worker.kill()
|
||||
|
||||
def performAction(self, action):
|
||||
for c in self.head.childs:
|
||||
if action == c.lastAction:
|
||||
self.head.universe.clearPQ()
|
||||
self.head.kill()
|
||||
self.head = c
|
||||
self.head.universe.activateEdge(self.head)
|
||||
return
|
||||
raise Exception('No such action avaible...')
|
||||
|
||||
def turn(self, bot=None, calcDepth=3, bg=True):
|
||||
print(str(self.head))
|
||||
if bot == None:
|
||||
c = choose('Select action?', ['human', 'bot', 'undo', 'qlen'])
|
||||
if c == 'undo':
|
||||
self.head = self.head.parent
|
||||
return
|
||||
elif c == 'qlen':
|
||||
print(self.head.universe.pq.qsize())
|
||||
return
|
||||
bot = c == 'bot'
|
||||
if bot:
|
||||
self.head.forceStrong(calcDepth)
|
||||
opts = []
|
||||
for c in self.head.childs:
|
||||
opts.append((c, c.getStrongFor(self.head.curPlayer)))
|
||||
opts.sort(key=lambda x: x[1])
|
||||
print('[i] Evaluated Options:')
|
||||
for o in opts:
|
||||
print('[ ]' + str(o[0].lastAction) + " (Score: "+str(o[1])+")")
|
||||
print('[#] I choose to play: ' + str(opts[0][0].lastAction))
|
||||
self.performAction(opts[0][0].lastAction)
|
||||
else:
|
||||
action = self.head.askUserForAction()
|
||||
self.performAction(action)
|
||||
|
||||
def game(self, bots=None, calcDepth=7, bg=True):
|
||||
if bg:
|
||||
self.spawnWorker()
|
||||
if bots == None:
|
||||
bots = [None]*self.head.playersNum
|
||||
while self.head.getWinner() == None:
|
||||
self.turn(bots[self.head.curPlayer], calcDepth, bg=True)
|
||||
print(['O', 'X', 'No one'][self.head.getWinner()] + ' won!')
|
||||
if bg:
|
||||
self.killWorker()
|
||||
|
||||
def saveModel(self, model, gen):
|
||||
dat = model.state_dict()
|
||||
with open(self.getModelFileName(), 'wb') as f:
|
||||
pickle.dump((gen, dat), f)
|
||||
|
||||
def loadModelState(self, model):
|
||||
with open(self.getModelFileName(), 'rb') as f:
|
||||
gen, dat = pickle.load(f)
|
||||
model.load_state_dict(dat)
|
||||
model.eval()
|
||||
return gen
|
||||
|
||||
def loadModel(self):
|
||||
model = self.head.state.getModel()
|
||||
gen = self.loadModelState(model)
|
||||
return model, gen
|
||||
|
||||
def getModelFileName(self):
|
||||
return 'brains/uttt.vac'
|
||||
|
||||
def saveToMemoryBank(self, term):
|
||||
with open('memoryBank/uttt/'+datetime.datetime.now().strftime('%Y-%m-%d_%H:%M:%S')+'_'+str(int(random.random()*99999))+'.vdm', 'wb') as f:
|
||||
pickle.dump(term, f)
|
||||
|
||||
|
||||
class NeuralRuntime(Runtime):
|
||||
def __init__(self, initState, **kwargs):
|
||||
super().__init__(initState, **kwargs)
|
||||
|
||||
model, gen = self.loadModel()
|
||||
|
||||
self.head.universe.model = model
|
||||
self.head.universe.scoreProvider = 'neural'
|
||||
|
||||
class Trainer(Runtime):
|
||||
def __init__(self, initState, **kwargs):
|
||||
super().__init__(initState, **kwargs)
|
||||
#self.universe = Universe()
|
||||
self.universe = self.head.universe
|
||||
self.rootNode = self.head
|
||||
self.terminal = None
|
||||
|
||||
def buildDatasetFromModel(self, model, depth=4, refining=True, fanOut=[5, 5, 5, 5, 4, 4, 4, 4], uncertainSec=15, exacity=5):
|
||||
print('[*] Building Timeline')
|
||||
term = self.linearPlay(model, calcDepth=depth, exacity=exacity)
|
||||
if refining:
|
||||
print('[*] Refining Timeline (exploring alternative endings)')
|
||||
cur = term
|
||||
for d in fanOut:
|
||||
cur = cur.parent
|
||||
cur.forceStrong(d)
|
||||
print('.', end='', flush=True)
|
||||
print('')
|
||||
print('[*] Refining Timeline (exploring uncertain regions)')
|
||||
self.timelineExpandUncertain(term, uncertainSec)
|
||||
return term
|
||||
|
||||
def linearPlay(self, model, calcDepth=7, exacity=5, verbose=False, firstNRandom=2):
|
||||
head = self.rootNode
|
||||
self.universe.model = model
|
||||
self.spawnWorker()
|
||||
while head.getWinner() == None:
|
||||
if verbose:
|
||||
print(head)
|
||||
else:
|
||||
print('.', end='', flush=True)
|
||||
head.forceStrong(calcDepth)
|
||||
opts = []
|
||||
if len(head.childs) == 0:
|
||||
break
|
||||
for c in head.childs:
|
||||
opts.append((c, c.getStrongFor(head.curPlayer)))
|
||||
if firstNRandom:
|
||||
firstNRandom -= 1
|
||||
ind = int(random.random()*len(opts))
|
||||
else:
|
||||
opts.sort(key=lambda x: x[1])
|
||||
if exacity >= 10:
|
||||
ind = 0
|
||||
else:
|
||||
ind = int(pow(random.random(), exacity)*(len(opts)-1))
|
||||
head = opts[ind][0]
|
||||
self.killWorker()
|
||||
if verbose:
|
||||
print(head)
|
||||
print(' => '+['O', 'X', 'No one'][head.getWinner()] + ' won!')
|
||||
return head
|
||||
|
||||
def timelineIterSingle(self, term):
|
||||
for i in self.timelineIter(self, [term]):
|
||||
yield i
|
||||
|
||||
def timelineIter(self, terms, altChildPerNode=-1):
|
||||
batch = len(terms)
|
||||
heads = terms
|
||||
while True:
|
||||
empty = True
|
||||
for b in range(batch):
|
||||
head = heads[b]
|
||||
if head == None:
|
||||
continue
|
||||
empty = False
|
||||
yield head
|
||||
if len(head.childs):
|
||||
if altChildPerNode == -1: # all
|
||||
for child in head.childs:
|
||||
yield child
|
||||
else:
|
||||
for j in range(min(altChildPerNode, int(len(head.childs)/2))):
|
||||
yield random.choice(head.childs)
|
||||
if head.parent == None:
|
||||
head = None
|
||||
else:
|
||||
head = head.parent
|
||||
heads[b] = head
|
||||
if empty:
|
||||
return
|
||||
|
||||
def timelineExpandUncertain(self, term, secs):
|
||||
self.rootNode.universe.clearPQ()
|
||||
self.rootNode.universe.activateEdge(self.rootNode)
|
||||
self.spawnWorker()
|
||||
for s in range(secs):
|
||||
time.sleep(1)
|
||||
print('.', end='', flush=True)
|
||||
self.rootNode.universe.clearPQ()
|
||||
self.killWorker()
|
||||
print('')
|
||||
|
||||
def trainModel(self, model, lr=0.00005, cut=0.01, calcDepth=4, exacity=5, terms=None, batch=16):
|
||||
loss_func = nn.MSELoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr)
|
||||
if terms == None:
|
||||
terms = []
|
||||
for i in range(batch):
|
||||
terms.append(self.buildDatasetFromModel(
|
||||
model, depth=calcDepth, exacity=exacity))
|
||||
print('[*] Conditioning Brain')
|
||||
for r in range(64):
|
||||
loss_sum = 0
|
||||
lLoss = 0
|
||||
zeroLen = 0
|
||||
for i, node in enumerate(self.timelineIter(terms)):
|
||||
for p in range(self.rootNode.playersNum):
|
||||
inp = node.state.getTensor(player=p)
|
||||
gol = torch.tensor(
|
||||
[node.getStrongFor(p)], dtype=torch.float)
|
||||
out = model(inp)
|
||||
loss = loss_func(out, gol)
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
loss_sum += loss.item()
|
||||
if loss.item() == 0.0:
|
||||
zeroLen += 1
|
||||
if zeroLen == 5:
|
||||
break
|
||||
print(loss_sum/i)
|
||||
if r > 16 and (loss_sum/i < cut or lLoss == loss_sum):
|
||||
return loss_sum
|
||||
lLoss = loss_sum
|
||||
return loss_sum
|
||||
|
||||
def main(self, model=None, gens=1024, startGen=0):
|
||||
newModel = False
|
||||
if model == None:
|
||||
print('[!] No brain found. Creating new one...')
|
||||
newModel = True
|
||||
model = self.rootNode.state.getModel()
|
||||
self.universe.scoreProvider = ['neural', 'naive'][newModel]
|
||||
model.train()
|
||||
for gen in range(startGen, startGen+gens):
|
||||
print('[#####] Gen '+str(gen)+' training:')
|
||||
loss = self.trainModel(model, calcDepth=min(
|
||||
4, 3+int(gen/16)), exacity=int(gen/3+1), batch=4)
|
||||
print('[L] '+str(loss))
|
||||
self.universe.scoreProvider = 'neural'
|
||||
self.saveModel(model, gen)
|
||||
|
||||
def trainFromTerm(self, term):
|
||||
model, gen = self.loadModel()
|
||||
self.universe.scoreProvider = 'neural'
|
||||
self.trainModel(model, calcDepth=4, exacity=10, term=term)
|
||||
self.saveModel(model)
|
||||
|
||||
def train(self):
|
||||
if os.path.exists(self.getModelFileName()):
|
||||
model, gen = self.loadModel()
|
||||
self.main(model, startGen=gen+1)
|
||||
else:
|
||||
self.main()
|
21
vacuumDecay/utils.py
Normal file
21
vacuumDecay/utils.py
Normal file
@ -0,0 +1,21 @@
|
||||
def choose(txt, options):
|
||||
while True:
|
||||
print('[*] '+txt)
|
||||
for num, opt in enumerate(options):
|
||||
print('['+str(num+1)+'] ' + str(opt))
|
||||
inp = input('[> ')
|
||||
try:
|
||||
n = int(inp)
|
||||
if n in range(1, len(options)+1):
|
||||
return options[n-1]
|
||||
except:
|
||||
pass
|
||||
for opt in options:
|
||||
if inp == str(opt):
|
||||
return opt
|
||||
if len(inp) == 1:
|
||||
for opt in options:
|
||||
if inp == str(opt)[0]:
|
||||
return opt
|
||||
print('[!] Invalid Input.')
|
||||
|
58
vacuumDecay/visualizer.py
Normal file
58
vacuumDecay/visualizer.py
Normal file
@ -0,0 +1,58 @@
|
||||
import threading
|
||||
import time
|
||||
import networkx as nx
|
||||
from flask import Flask, render_template, jsonify
|
||||
from flask_socketio import SocketIO, emit
|
||||
|
||||
class Visualizer:
|
||||
def __init__(self, universe):
|
||||
self.universe = universe
|
||||
self.graph = nx.DiGraph()
|
||||
self.app = Flask(__name__)
|
||||
self.socketio = SocketIO(self.app)
|
||||
self.init_flask()
|
||||
|
||||
def init_flask(self):
|
||||
@self.app.route('/')
|
||||
def index():
|
||||
return render_template('index.html')
|
||||
|
||||
@self.app.route('/data')
|
||||
def data():
|
||||
nodes_data = []
|
||||
edges_data = []
|
||||
for node in self.universe.iter():
|
||||
nodes_data.append({
|
||||
'id': id(node),
|
||||
'image': node.state.getImage().tobytes() if node.state.getImage() else None,
|
||||
'value': node.getScoreFor(node.state.curPlayer),
|
||||
'last_updated': node.last_updated
|
||||
})
|
||||
for child in node.childs:
|
||||
edges_data.append({'source': id(node), 'target': id(child)})
|
||||
return jsonify(nodes=nodes_data, edges=edges_data)
|
||||
|
||||
@self.socketio.on('connect')
|
||||
def handle_connect():
|
||||
print('Client connected')
|
||||
|
||||
def send_update(self):
|
||||
nodes_data = []
|
||||
edges_data = []
|
||||
for node in self.universe.iter():
|
||||
nodes_data.append({
|
||||
'id': id(node),
|
||||
'image': node.state.getImage().tobytes() if node.state.getImage() else None,
|
||||
'value': node.getScoreFor(node.state.curPlayer),
|
||||
'last_updated': node.last_updated
|
||||
})
|
||||
for child in node.childs:
|
||||
edges_data.append({'source': id(node), 'target': id(child)})
|
||||
self.socketio.emit('update', {'nodes': nodes_data, 'edges': edges_data})
|
||||
|
||||
def run(self):
|
||||
self.socketio.run(self.app, debug=True, use_reloader=False)
|
||||
|
||||
def start(self):
|
||||
self.thread = threading.Thread(target=self.run)
|
||||
self.thread.start()
|
Loading…
Reference in New Issue
Block a user