Compare commits

...

2 Commits

Author SHA1 Message Date
072bc391d1 Different net arch (back to fancy conv) 2022-05-18 19:44:56 +02:00
9c6077e213 Loss seems to low? 2022-05-18 19:44:40 +02:00
2 changed files with 59 additions and 45 deletions

View File

@ -6,6 +6,7 @@ from vacuumDecay import *
from collections import Counter
import itertools
class TTTState(State):
def __init__(self, curPlayer=0, generation=0, playersNum=2, board=None, lastMove=-1):
if type(board) == type(None):
@ -40,13 +41,13 @@ class TTTState(State):
return "."
def mutate(self, action):
newBoard = self.board[:action.data] + ['O','X'][self.curPlayer] + self.board[action.data+1:]
newBoard = self.board[:action.data] + ['O',
'X'][self.curPlayer] + self.board[action.data+1:]
return TTTState(curPlayer=(self.curPlayer+1) % self.playersNum, playersNum=self.playersNum, board=newBoard, lastMove=action.data)
def box(self, x, y):
return index(x, y) // 9
def next_box(self, i):
return i % 9
@ -67,7 +68,8 @@ class TTTState(State):
box_to_play = self.next_box(self.last_move)
idxs = self.indices_of_box(box_to_play)
if self.box_won[box_to_play] != ".":
pi_2d = [self.indices_of_box(b) for b in range(9) if self.box_won[b] == "."]
pi_2d = [self.indices_of_box(b) for b in range(
9) if self.box_won[b] == "."]
possible_indices = list(itertools.chain.from_iterable(pi_2d))
else:
possible_indices = idxs
@ -130,7 +132,6 @@ class TTTState(State):
else:
return 1.0 - 2.0 * self.curPlayer
def getTensor(self, player=None, phase='default'):
if player == None:
player = self.curPlayer
@ -144,50 +145,59 @@ class TTTState(State):
def getModel(cls, phase='default'):
return Model()
class Model(nn.Module):
def __init__(self):
super().__init__()
self.chansPerSmol = 24
self.chansPerSlot = 8
self.chansComp = 8
self.smol = nn.Sequential(
nn.Conv2d(
in_channels=1,
out_channels=16,
out_channels=self.chansPerSmol,
kernel_size=(3, 3),
stride=3,
padding=0,
),
nn.ReLU()
)
#self.comb = nn.Sequential(
# nn.Conv1d(
# in_channels=24,
# out_channels=8,
# kernel_size=1,
# stride=1,
# padding=0,
# ),
# nn.ReLU()
#)
self.comb = nn.Sequential(
nn.Conv1d(
in_channels=self.chansPerSmol,
out_channels=self.chansPerSlot,
kernel_size=1,
stride=1,
padding=0,
),
nn.ReLU()
)
self.out = nn.Sequential(
nn.Linear(self.chansPerSlot*9, self.chansComp),
nn.ReLU(),
nn.Linear(self.chansComp, 1),
#nn.Linear(9*8, 32),
# nn.ReLU(),
#nn.Linear(32, 8),
# nn.ReLU(),
nn.Linear(16*9, 12),
nn.ReLU(),
nn.Linear(12, 1),
#nn.Linear(16*9, 12),
# nn.ReLU(),
#nn.Linear(12, 1),
nn.Sigmoid()
)
def forward(self, x):
x = torch.reshape(x, (1, 9, 9))
x = self.smol(x)
#x = torch.reshape(x, (24,9))
#x = self.comb(x)
x = torch.reshape(x, (self.chansPerSmol, 9))
x = self.comb(x)
x = torch.reshape(x, (-1,))
y = self.out(x)
return y
def humanVsAi(train=True, remember=False, depth=3, bots=[0, 1], noBg=False):
init = TTTState()
run = NeuralRuntime(init)
@ -199,19 +209,23 @@ def humanVsAi(train=True, remember=False, depth=3, bots=[0,1], noBg=False):
trainer.saveToMemoryBank(run.head)
print('[!] Your cognitive and strategic destinctiveness was added to my own! (Game inserted into memoryBank)')
if train:
print("[!] Your knowledge will be assimilated!!! Please stand by.... (Updating Neuristic)")
print(
"[!] Your knowledge will be assimilated!!! Please stand by.... (Updating Neuristic)")
trainer.trainFromTerm(run.head)
print('[!] I have become smart! Destroyer of human Ultimate-TicTacToe players! (Neuristic update completed)')
print('[!] This marks the beginning of the end of humankind!')
print('[i] Thanks for playing! Goodbye...')
def aiVsAiLoop():
init = TTTState()
trainer = Trainer(init)
trainer.train()
if __name__ == '__main__':
options = ['Play Against AI','Play Against AI (AI begins)','Play Against AI (Fast Play)','Playground','Let AI train']
options = ['Play Against AI',
'Play Against AI (AI begins)', 'Play Against AI (Fast Play)', 'Playground', 'Let AI train']
opt = choose('?', options)
if opt == options[0]:
humanVsAi()

View File

@ -492,7 +492,7 @@ class Runtime():
return model, gen
def getModelFileName(self):
return 'brains/utt.vac'
return 'brains/uttt.vac'
def saveToMemoryBank(self, term):
return
@ -605,7 +605,7 @@ class Trainer(Runtime):
self.killWorker()
print('')
def trainModel(self, model, lr=0.00005, cut=0.01, calcDepth=4, exacity=5, terms=None, batch=16):
def trainModel(self, model, lr=0.000001, cut=0.01, calcDepth=4, exacity=5, terms=None, batch=16):
loss_func = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr)
if terms == None:
@ -633,7 +633,7 @@ class Trainer(Runtime):
zeroLen += 1
if zeroLen == 5:
break
# print(loss_sum/i)
print(loss_sum/i)
if r > 16 and (loss_sum/i < cut or lLoss == loss_sum):
return loss_sum
lLoss = loss_sum