import time import random import threading import torch import torch.nn as nn from torch import optim from math import sqrt, pow, inf #from multiprocessing import Event from abc import ABC, abstractmethod from threading import Event from queue import PriorityQueue, Empty from dataclasses import dataclass, field from typing import Any import random import datetime import pickle class Action(): # Should hold the data representing an action # Actions are applied to a State in State.mutate def __init__(self, player, data): self.player = player self.data = data def __eq__(self, other): # This should be implemented differently # Two actions of different generations will never be compared if type(other) != type(self): return False return str(self.data) == str(other.data) def __str__(self): # should return visual representation of this action # should start with < and end with > return "
" class State(ABC): # Hold a representation of the current game-state # Allows retriving avaible actions (getAvaibleActions) and applying them (mutate) # Mutations return a new State and should not have any effect on the current State # Allows checking itself for a win (checkWin) or scoring itself based on a simple heuristic (getScore) # The calculated score should be 0 when won; higher when in a worse state; highest for loosing # getPriority is used for prioritising certain Nodes / States when expanding / walking the tree def __init__(self, curPlayer=0, generation=0, playersNum=2): self.curPlayer = curPlayer self.generation = generation self.playersNum = playersNum @abstractmethod def mutate(self, action): # Returns a new state with supplied action performed # self should not be changed return State(curPlayer=(self.curPlayer+1) % self.playersNum, generation=self.generation+1, playersNum=self.playersNum) @abstractmethod def getAvaibleActions(self): # Should return an array of all possible actions return [] def askUserForAction(self, actions): return choose('What does player '+str(self.curPlayer)+' want to do?', actions) # improveMe def getPriority(self, score, cascadeMemory): # Used for ordering the priority queue # Priority should not change for the same root # Lower prioritys get worked on first # Higher generations should have higher priority # Higher cascadeMemory (more influence on higher-order-scores) should have lower priority return score + self.generation*0.5 - cascadeMemory*0.35 @abstractmethod def checkWin(self): # -1 -> Draw # None -> Not ended # n e N -> player n won return None # improveMe def getScoreFor(self, player): # 0 <= score <= 1; should return close to zero when we are winning w = self.checkWin() if w == None: return 0.5 if w == player: return 0 if w == -1: return 0.9 return 1 @abstractmethod def __str__(self): # return visual rep of state return "[#]" @abstractmethod def getTensor(self, player=None, phase='default'): if player==None: player = self.curPlayer return torch.tensor([0]) @classmethod def getModel(cls, phase='default'): pass def getScoreNeural(self, model, player=None, phase='default'): return model(self.getTensor(player=player, phase=phase)).item() class Universe(): def __init__(self): self.scoreProvider = 'naive' def newOpen(self, node): pass def merge(self, node): return node def clearPQ(self): pass def iter(self): return [] def activateEdge(self, head): pass @dataclass(order=True) class PQItem: priority: int data: Any=field(compare=False) class QueueingUniverse(Universe): def __init__(self): super().__init__() self.pq = PriorityQueue() def newOpen(self, node): item = PQItem(node.getPriority(), node) self.pq.put(item) def merge(self, node): self.newOpen(node) return node def clearPQ(self): self.pq = PriorityQueue() def iter(self): while True: try: yield self.pq.get(False).data except Empty: return None def activateEdge(self, head): head._activateEdge() class Node(): def __init__(self, state, universe=None, parent=None, lastAction=None): self.state = state if universe==None: print('[!] No Universe defined. Spawning one...') universe = Universe() self.universe = universe self.parent = parent self.lastAction = lastAction self._childs = None self._scores = [None]*self.state.playersNum self._strongs = [None]*self.state.playersNum self._alive = True self._cascadeMemory = 0 # Used for our alternative to alpha-beta pruning def kill(self): self._alive = False def revive(self): self._alive = True @property def childs(self): if self._childs == None: self._expand() return self._childs def _expand(self): self._childs = [] actions = self.state.getAvaibleActions() for action in actions: newNode = Node(self.state.mutate(action), self.universe, self, action) self._childs.append(self.universe.merge(newNode)) def getStrongFor(self, player): if self._strongs[player]!=None: return self._strongs[player] else: return self.getScoreFor(player) def _pullStrong(self): # Currently Expecti-Max strongs = [None]*self.playersNum for p in range(self.playersNum): cp = self.state.curPlayer if cp == p: # P owns the turn; controlls outcome best = inf for c in self.childs: if c.getStrongFor(p) < best: best = c.getStrongFor(p) strongs[p] = best else: scos = [(c.getStrongFor(p), c.getStrongFor(cp)) for c in self.childs] scos.sort(key=lambda x: x[1]) betterHalf = scos[:max(3,int(len(scos)/3))] myScores = [bh[0]**2 for bh in betterHalf] strongs[p] = sqrt(myScores[0]*0.75 + sum(myScores)/(len(myScores)*4)) update = False for s in range(self.playersNum): if strongs[s] != self._strongs[s]: update = True break self._strongs = strongs if update: if self.parent!=None: cascade = self.parent._pullStrong() else: cascade = 2 self._cascadeMemory = self._cascadeMemory/2 + cascade return cascade + 1 self._cascadeMemory /= 2 return 0 def forceStrong(self, depth=3): if depth==0: self.strongDecay() else: if len(self.childs): for c in self.childs: c.forceStrong(depth-1) else: self.strongDecay() def decayEvent(self): for c in self.childs: c.strongDecay() def strongDecay(self): if self._strongs == [None]*self.playersNum: if not self.scoresAvaible(): self._calcScores() self._strongs = self._scores if self.parent: return self.parent._pullStrong() return 1 return None def getSelfScore(self): return self.getScoreFor(self.curPlayer) def getScoreFor(self, player): if self._scores[player] == None: self._calcScore(player) return self._scores[player] def scoreAvaible(self, player): return self._scores[player] != None def scoresAvaible(self): for p in self._scores: if p==None: return False return True def strongScoresAvaible(self): for p in self._strongs: if p==None: return False return True def askUserForAction(self): return self.state.askUserForAction(self.avaibleActions) def _calcScores(self): for p in range(self.state.playersNum): self._calcScore(p) def _calcScore(self, player): winner = self._getWinner() if winner!=None: if winner==player: self._scores[player] = 0.0 elif winner==-1: self._scores[player] = 2/3 else: self._scores[player] = 1.0 return if self.universe.scoreProvider == 'naive': self._scores[player] = self.state.getScoreFor(player) elif self.universe.scoreProvider == 'neural': self._scores[player] = self.state.getScoreNeural(self.universe.model, player) else: raise Exception('Uknown Score-Provider') def getPriority(self): return self.state.getPriority(self.getSelfScore(), self._cascadeMemory) @property def playersNum(self): return self.state.playersNum @property def avaibleActions(self): r = [] for c in self.childs: r.append(c.lastAction) return r @property def curPlayer(self): return self.state.curPlayer def _getWinner(self): return self.state.checkWin() def getWinner(self): if len(self.childs)==0: return -1 return self._getWinner() def _activateEdge(self, dist=0): if not self.strongScoresAvaible(): self.universe.newOpen(self) else: for c in self.childs: if c._cascadeMemory > 0.001*(dist-2) or random.random()<0.01: c._activateEdge(dist=dist+1) def __str__(self): s = [] if self.lastAction == None: s.append("[ {ROOT} ]") else: s.append("[ -> "+str(self.lastAction)+" ]") s.append("[ turn: "+str(self.state.curPlayer)+" ]") s.append(str(self.state)) s.append("[ score: "+str(self.getScoreFor(0))+" ]") return '\n'.join(s) def choose(txt, options): while True: print('[*] '+txt) for num,opt in enumerate(options): print('['+str(num+1)+'] ' + str(opt)) inp = input('[> ') try: n = int(inp) if n in range(1,len(options)+1): return options[n-1] except: pass for opt in options: if inp==str(opt): return opt if len(inp)==1: for opt in options: if inp==str(opt)[0]: return opt print('[!] Invalid Input.') class Worker(): def __init__(self, universe): self.universe = universe self._alive = True def run(self): import threading self.thread = threading.Thread(target=self.runLocal) self.thread.start() def runLocal(self): for i, node in enumerate(self.universe.iter()): if node==None: time.sleep(1) if not self._alive: return node.decayEvent() def kill(self): self._alive = False self.thread.join(15) def revive(self): self._alive = True class Runtime(): def __init__(self, initState): universe = QueueingUniverse() self.head = Node(initState, universe = universe) _ = self.head.childs universe.newOpen(self.head) def spawnWorker(self): self.worker = Worker(self.head.universe) self.worker.run() def killWorker(self): self.worker.kill() def performAction(self, action): for c in self.head.childs: if action == c.lastAction: self.head.universe.clearPQ() self.head.kill() self.head = c self.head.universe.activateEdge(self.head) return raise Exception('No such action avaible...') def turn(self, bot=None, calcDepth=3): print(str(self.head)) if bot==None: c = choose('Select action?', ['human', 'bot', 'undo', 'qlen']) if c=='undo': self.head = self.head.parent return elif c=='qlen': print(self.head.universe.pq.qsize()) return bot = c=='bot' if bot: self.head.forceStrong(calcDepth) opts = [] for c in self.head.childs: opts.append((c, c.getStrongFor(self.head.curPlayer))) opts.sort(key=lambda x: x[1]) print('[i] Evaluated Options:') for o in opts: #print('['+str(o[0])+']' + str(o[0].lastAction) + " (Score: "+str(o[1])+")") print('[ ]' + str(o[0].lastAction) + " (Score: "+str(o[1])+")") print('[#] I choose to play: ' + str(opts[0][0].lastAction)) self.performAction(opts[0][0].lastAction) else: action = self.head.askUserForAction() self.performAction(action) def game(self, bots=None, calcDepth=7): self.spawnWorker() if bots==None: bots = [None]*self.head.playersNum while self.head.getWinner()==None: self.turn(bots[self.head.curPlayer], calcDepth) print(str(self.head.getWinner()) + ' won!') self.killWorker() class NeuralRuntime(Runtime): def __init__(self, initState): super().__init__(initState) model = self.head.state.getModel() model.load_state_dict(torch.load('brains/uttt.pth')) model.eval() self.head.universe.model = model self.head.universe.scoreProvider = 'neural' class Trainer(Runtime): def __init__(self, initState): super().__init__(initState) #self.universe = Universe() self.universe = self.head.universe self.rootNode = self.head self.terminal = None def buildDatasetFromModel(self, model, depth=4, refining=True, exacity=5): print('[*] Building Timeline') term = self.linearPlay(model, calcDepth=depth, exacity=exacity) if refining: print('[*] Refining Timeline (exploring alternative endings)') self.fanOut(term, depth=depth+2) self.fanOut(term.parent, depth=depth+2) self.fanOut(term.parent.parent, depth=depth+2) print('[*] Refining Timeline (exploring uncertain regions)') self.timelineExpandUncertain(term, 10) return term def fanOut(self, head, depth=4): for d in range(max(1, depth-2)): head = head.parent head.forceStrong(depth) def linearPlay(self, model, calcDepth=7, exacity=5, verbose=True): head = self.rootNode self.universe.model = model while head.getWinner()==None: if verbose: print(head) else: print('.', end='', flush=True) head.forceStrong(calcDepth) opts = [] if len(head.childs)==0: break for c in head.childs: opts.append((c, c.getStrongFor(head.curPlayer))) opts.sort(key=lambda x: x[1]) if exacity >= 10: ind = 0 else: ind = int(pow(random.random(),exacity)*(len(opts)-1)) head = opts[ind][0] print('') return head def timelineIter(self, term): head = term while True: yield head if len(head.childs): yield random.choice(head.childs) if head.parent == None: return head = head.parent def timelineExpandUncertain(self, term, secs): self.rootNode.universe.clearPQ() self.rootNode.universe.activateEdge(self.rootNode) self.spawnWorker() time.sleep(secs) self.rootNode.universe.clearPQ() self.killWorker() def trainModel(self, model, lr=0.00005, cut=0.01, calcDepth=4, exacity=5, term=None): loss_func = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr) if term==None: term = self.buildDatasetFromModel(model, depth=calcDepth, exacity=exacity) print('[*] Conditioning Brain...') for r in range(64): loss_sum = 0 lLoss = 0 zeroLen = 0 for i, node in enumerate(self.timelineIter(term)): for p in range(self.rootNode.playersNum): inp = node.state.getTensor(player=p) gol = torch.tensor(node.getStrongFor(p), dtype=torch.float) out = model(inp) loss = loss_func(out, gol) optimizer.zero_grad() loss.backward() optimizer.step() loss_sum += loss.item() if loss.item() == 0.0: zeroLen+=1 if zeroLen == 5: break #print(loss_sum/i) if r > 16 and (loss_sum/i < cut or lLoss == loss_sum): return lLoss = loss_sum def main(self, model=None, gens=1024, startGen=12): newModel = False if model==None: newModel = True model = self.rootNode.state.getModel() self.universe.scoreProvider = ['neural','naive'][newModel] for gen in range(startGen, startGen+gens): print('[#####] Gen '+str(gen)+' training:') self.trainModel(model, calcDepth=min(5,3+int(gen/16)), exacity=int(gen/3+1)) self.universe.scoreProvider = 'neural' self.saveModel(model) def saveModel(self, model): torch.save(model.state_dict(), 'brains/uttt.pth') def train(self): model = self.rootNode.state.getModel() model.load_state_dict(torch.load('brains/uttt.pth')) model.eval() self.main(model, startGen=0) def trainFromTerm(self, term): model = self.rootNode.state.getModel() model.load_state_dict(torch.load('brains/uttt.pth')) model.eval() self.universe.scoreProvider = 'neural' self.trainModel(model, calcDepth=4, exacity=10, term=term) self.saveModel(model) def saveToMemoryBank(self, term): with open('memoryBank/uttt/'+datetime.datetime.now().strftime('%Y-%m-%d_%H:%M:%S')+'_'+str(int(random.random()*99999))+'.vdm', 'wb') as f: pickle.dump(term, f)