vacuumDecay/vacuumDecay.py
2022-04-15 18:11:18 +02:00

592 lines
18 KiB
Python

import time
import random
import threading
import torch
import torch.nn as nn
from torch import optim
from math import sqrt, pow, inf
#from multiprocessing import Event
from abc import ABC, abstractmethod
from threading import Event
from queue import PriorityQueue, Empty
from dataclasses import dataclass, field
from typing import Any
import random
class Action():
# Should hold the data representing an action
# Actions are applied to a State in State.mutate
def __init__(self, player, data):
self.player = player
self.data = data
def __eq__(self, other):
# This should be implemented differently
# Two actions of different generations will never be compared
if type(other) != type(self):
return False
return str(self.data) == str(other.data)
def __str__(self):
# should return visual representation of this action
# should start with < and end with >
return "<P"+str(self.player)+"-"+str(self.data)+">"
class State(ABC):
# Hold a representation of the current game-state
# Allows retriving avaible actions (getAvaibleActions) and applying them (mutate)
# Mutations return a new State and should not have any effect on the current State
# Allows checking itself for a win (checkWin) or scoring itself based on a simple heuristic (getScore)
# The calculated score should be 0 when won; higher when in a worse state; highest for loosing
# getPriority is used for prioritising certain Nodes / States when expanding / walking the tree
def __init__(self, curPlayer=0, generation=0, playersNum=2):
self.curPlayer = curPlayer
self.generation = generation
self.playersNum = playersNum
@abstractmethod
def mutate(self, action):
# Returns a new state with supplied action performed
# self should not be changed
return State(curPlayer=(self.curPlayer+1) % self.playersNum, generation=self.generation+1, playersNum=self.playersNum)
@abstractmethod
def getAvaibleActions(self):
# Should return an array of all possible actions
return []
def askUserForAction(self, actions):
return choose('What does player '+str(self.curPlayer)+' want to do?', actions)
# improveMe
def getPriority(self, score, cascadeMemory):
# Used for ordering the priority queue
# Priority should not change for the same root
# Lower prioritys get worked on first
# Higher generations should have higher priority
# Higher cascadeMemory (more influence on higher-order-scores) should have lower priority
return score + self.generation*0.5 - cascadeMemory*0.35
@abstractmethod
def checkWin(self):
# -1 -> Draw
# None -> Not ended
# n e N -> player n won
return None
# improveMe
def getScoreFor(self, player):
# 0 <= score <= 1; should return close to zero when we are winning
w = self.checkWin()
if w == None:
return 0.5
if w == player:
return 0
if w == -1:
return 0.9
return 1
@abstractmethod
def __str__(self):
# return visual rep of state
return "[#]"
@abstractmethod
def getTensor(self, player=None, phase='default'):
if player==None:
player = self.curPlayer
return torch.tensor([0])
@classmethod
def getModel(cls, phase='default'):
pass
def getScoreNeural(self, model, player=None, phase='default'):
return model(self.getTensor(player=player, phase=phase)).item()
class Universe():
def __init__(self):
self.scoreProvider = 'naive'
def newOpen(self, node):
pass
def merge(self, node):
return node
def clearPQ(self):
pass
def iter(self):
return []
def activateEdge(self, head):
pass
@dataclass(order=True)
class PQItem:
priority: int
data: Any=field(compare=False)
class QueueingUniverse(Universe):
def __init__(self):
super().__init__()
self.pq = PriorityQueue()
def newOpen(self, node):
item = PQItem(node.getPriority(), node)
self.pq.put(item)
def merge(self, node):
self.newOpen(node)
return node
def clearPQ(self):
self.pq = PriorityQueue()
def iter(self):
while True:
try:
yield self.pq.get(False).data
except Empty:
time.sleep(1)
def activateEdge(self, head):
head._activateEdge()
class Node():
def __init__(self, state, universe=None, parent=None, lastAction=None):
self.state = state
if universe==None:
print('[!] No Universe defined. Spawning one...')
universe = Universe()
self.universe = universe
self.parent = parent
self.lastAction = lastAction
self._childs = None
self._scores = [None]*self.state.playersNum
self._strongs = [None]*self.state.playersNum
self._alive = True
self._cascadeMemory = 0 # Used for our alternative to alpha-beta pruning
def kill(self):
self._alive = False
def revive(self):
self._alive = True
@property
def childs(self):
if self._childs == None:
self._expand()
return self._childs
def _expand(self):
self._childs = []
actions = self.state.getAvaibleActions()
for action in actions:
newNode = Node(self.state.mutate(action), self.universe, self, action)
self._childs.append(self.universe.merge(newNode))
def getStrongFor(self, player):
if self._strongs[player]!=None:
return self._strongs[player]
else:
return self.getScoreFor(player)
def _pullStrong(self): # Currently Expecti-Max
strongs = [None]*self.playersNum
for p in range(self.playersNum):
cp = self.state.curPlayer
if cp == p: # P owns the turn; controlls outcome
best = inf
for c in self.childs:
if c.getStrongFor(p) < best:
best = c.getStrongFor(p)
strongs[p] = best
else:
scos = [(c.getStrongFor(p), c.getStrongFor(cp)) for c in self.childs]
scos.sort(key=lambda x: x[1])
betterHalf = scos[:max(3,int(len(scos)/3))]
myScores = [bh[0]**2 for bh in betterHalf]
strongs[p] = sqrt(myScores[0]*0.75 + sum(myScores)/(len(myScores)*4))
update = False
for s in range(self.playersNum):
if strongs[s] != self._strongs[s]:
update = True
break
self._strongs = strongs
if update:
if self.parent!=None:
cascade = self.parent._pullStrong()
else:
cascade = 2
self._cascadeMemory = self._cascadeMemory/2 + cascade
return cascade + 1
self._cascadeMemory /= 2
return 0
def forceStrong(self, depth=3):
if depth==0:
self.strongDecay()
else:
if len(self.childs):
for c in self.childs:
c.forceStrong(depth-1)
else:
self.strongDecay()
def decayEvent(self):
for c in self.childs:
c.strongDecay()
def strongDecay(self):
if self._strongs == [None]*self.playersNum:
if not self.scoresAvaible():
self._calcScores()
self._strongs = self._scores
if self.parent:
return self.parent._pullStrong()
return 1
return None
def getSelfScore(self):
return self.getScoreFor(self.curPlayer)
def getScoreFor(self, player):
if self._scores[player] == None:
self._calcScore(player)
return self._scores[player]
def scoreAvaible(self, player):
return self._scores[player] != None
def scoresAvaible(self):
for p in self._scores:
if p==None:
return False
return True
def strongScoresAvaible(self):
for p in self._strongs:
if p==None:
return False
return True
def askUserForAction(self):
return self.state.askUserForAction(self.avaibleActions)
def _calcScores(self):
for p in range(self.state.playersNum):
self._calcScore(p)
def _calcScore(self, player):
winner = self._getWinner()
if winner!=None:
if winner==player:
self._scores[player] = 0.0
elif winner==-1:
self._scores[player] = 2/3
else:
self._scores[player] = 1.0
return
if self.universe.scoreProvider == 'naive':
self._scores[player] = self.state.getScoreFor(player)
elif self.universe.scoreProvider == 'neural':
self._scores[player] = self.state.getScoreNeural(self.universe.model, player)
else:
raise Exception('Uknown Score-Provider')
def getPriority(self):
return self.state.getPriority(self.getSelfScore(), self._cascadeMemory)
@property
def playersNum(self):
return self.state.playersNum
@property
def avaibleActions(self):
r = []
for c in self.childs:
r.append(c.lastAction)
return r
@property
def curPlayer(self):
return self.state.curPlayer
def _getWinner(self):
return self.state.checkWin()
def getWinner(self):
if len(self.childs)==0:
return -1
return self._getWinner()
def _activateEdge(self, dist=0):
if not self.strongScoresAvaible():
self.universe.newOpen(self)
else:
for c in self.childs:
if c._cascadeMemory > 0.001*(dist-2) or random.random()<0.01:
c._activateEdge(dist=dist+1)
def __str__(self):
s = []
if self.lastAction == None:
s.append("[ {ROOT} ]")
else:
s.append("[ -> "+str(self.lastAction)+" ]")
s.append("[ turn: "+str(self.state.curPlayer)+" ]")
s.append(str(self.state))
s.append("[ score: "+str(self.getScoreFor(0))+" ]")
return '\n'.join(s)
def choose(txt, options):
while True:
print('[*] '+txt)
for num,opt in enumerate(options):
print('['+str(num+1)+'] ' + str(opt))
inp = input('[> ')
try:
n = int(inp)
if n in range(1,len(options)+1):
return options[n-1]
except:
pass
for opt in options:
if inp==str(opt):
return opt
if len(inp)==1:
for opt in options:
if inp==str(opt)[0]:
return opt
print('[!] Invalid Input.')
class Worker():
def __init__(self, universe):
self.universe = universe
self._alive = True
def run(self):
import threading
self.thread = threading.Thread(target=self.runLocal)
self.thread.start()
def runLocal(self):
for i, node in enumerate(self.universe.iter()):
if not self._alive:
return
node.decayEvent()
def kill(self):
self._alive = False
self.thread.join()
def revive(self):
self._alive = True
class Runtime():
def __init__(self, initState):
universe = QueueingUniverse()
self.head = Node(initState, universe = universe)
_ = self.head.childs
universe.newOpen(self.head)
def spawnWorker(self):
self.worker = Worker(self.head.universe)
self.worker.run()
def killWorker(self):
self.worker.kill()
def performAction(self, action):
for c in self.head.childs:
if action == c.lastAction:
self.head.universe.clearPQ()
self.head.kill()
self.head = c
self.head.universe.activateEdge(self.head)
return
raise Exception('No such action avaible...')
def turn(self, bot=None, calcDepth=7):
print(str(self.head))
if bot==None:
c = choose('Select action?', ['human', 'bot', 'undo', 'qlen'])
if c=='undo':
self.head = self.head.parent
return
elif c=='qlen':
print(self.head.universe.pq.qsize())
return
bot = c=='bot'
if bot:
self.head.forceStrong(calcDepth)
opts = []
for c in self.head.childs:
opts.append((c, c.getStrongFor(self.head.curPlayer)))
opts.sort(key=lambda x: x[1])
print('[i] Evaluated Options:')
for o in opts:
#print('['+str(o[0])+']' + str(o[0].lastAction) + " (Score: "+str(o[1])+")")
print('[ ]' + str(o[0].lastAction) + " (Score: "+str(o[1])+")")
print('[#] I choose to play: ' + str(opts[0][0].lastAction))
self.performAction(opts[0][0].lastAction)
else:
action = self.head.askUserForAction()
self.performAction(action)
def game(self, bots=None, calcDepth=7):
self.spawnWorker()
if bots==None:
bots = [None]*self.head.playersNum
while self.head.getWinner()==None:
self.turn(bots[self.head.curPlayer], calcDepth)
print(str(self.head.getWinner()) + ' won!')
self.killWorker()
class NeuralRuntime(Runtime):
def __init__(self, initState):
super().__init__(initState)
model = self.head.state.getModel()
model.load_state_dict(torch.load('brains/uttt.pth'))
model.eval()
self.head.universe.model = model
self.head.universe.scoreProvider = 'neural'
class Trainer(Runtime):
def __init__(self, initState):
self.universe = Universe()
#self.universe = QueueingUniverse()
self.rootNode = Node(initState, universe = self.universe)
self.terminal = None
def buildDatasetFromModel(self, model, depth=4, refining=True, exacity=5):
print('[*] Building Timeline')
term = self.linearPlay(model, calcDepth=depth, exacity=exacity)
if refining:
print('[*] Refining Timeline (exploring alternative endings)')
self.fanOut(term, depth=depth+2)
self.fanOut(term.parent, depth=depth+2)
self.fanOut(term.parent.parent, depth=depth+2)
#print('[*] Refining Timeline (exploring uncertain regions)')
#self.timelineExpandUncertain(term, 20)
return term
def fanOut(self, head, depth=4):
for d in range(max(1, depth-2)):
head = head.parent
head.forceStrong(depth)
def linearPlay(self, model, calcDepth=7, exacity=5, verbose=True):
head = self.rootNode
self.universe.model = model
while head.getWinner()==None:
if verbose:
print(head)
else:
print('.', end='', flush=True)
head.forceStrong(calcDepth)
opts = []
if len(head.childs)==0:
break
for c in head.childs:
opts.append((c, c.getStrongFor(head.curPlayer)))
opts.sort(key=lambda x: x[1])
if exacity >= 10:
ind = 0
else:
ind = int(pow(random.random(),exacity)*(len(opts)-1))
head = opts[ind][0]
print('')
return head
def timelineIter(self, term):
head = term
while True:
yield head
if len(head.childs):
yield random.choice(head.childs)
if head.parent == None:
return
head = head.parent
def timelineExpandUncertain(self, term, secs):
return
self.rootNode.universe.clearPQ()
self.rootNode.universe.activateEdge(rootNode)
self.spawnWorker()
time.sleep(secs)
self.rootNode.universe.clearPQ()
self.killWorker()
def trainModel(self, model, lr=0.00005, cut=0.01, calcDepth=4, exacity=5, term=None):
loss_func = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr)
if term==None:
term = self.buildDatasetFromModel(model, depth=calcDepth, exacity=exacity)
print('[*] Conditioning Brain...')
for r in range(64):
loss_sum = 0
lLoss = 0
zeroLen = 0
for i, node in enumerate(self.timelineIter(term)):
for p in range(self.rootNode.playersNum):
inp = node.state.getTensor(player=p)
gol = torch.tensor(node.getStrongFor(p), dtype=torch.float)
out = model(inp)
loss = loss_func(out, gol)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_sum += loss.item()
if loss.item() == 0.0:
zeroLen+=1
if zeroLen == 5:
break
#print(loss_sum/i)
if r > 16 and (loss_sum/i < cut or lLoss == loss_sum):
return
lLoss = loss_sum
def main(self, model=None, gens=1024, startGen=12):
newModel = False
if model==None:
newModel = True
model = self.rootNode.state.getModel()
self.universe.scoreProvider = ['neural','naive'][newModel]
for gen in range(startGen, startGen+gens):
print('[#####] Gen '+str(gen)+' training:')
self.trainModel(model, calcDepth=min(5,3+int(gen/16)), exacity=int(gen/3+1))
self.universe.scoreProvider = 'neural'
self.saveModel(model)
def saveModel(self, model):
torch.save(model.state_dict(), 'brains/uttt.pth')
def train(self):
model = self.rootNode.state.getModel()
model.load_state_dict(torch.load('brains/uttt.pth'))
model.eval()
self.main(model, startGen=0)
def trainFromTerm(self, term):
model = self.rootNode.state.getModel()
model.load_state_dict(torch.load('brains/uttt.pth'))
model.eval()
self.universe.scoreProvider = 'neural'
self.trainModel(model, calcDepth=4, exacity=10, term=term)
self.saveModel(model)
def saveToMemoryBank(self, term):
with open('memoryBank/uttt/'+datetime.datetime.now().strftime('%Y-%m-%d_%H:%M:%S')+'_'+str(int(random.random()*99999))+'.vdm', 'wb') as f:
pickel.dump(term, f)