vacuumDecay/vacuumDecay.py
2022-04-14 11:38:08 +02:00

355 lines
10 KiB
Python

import time
import random
import threading
import torch
from math import sqrt
#from multiprocessing import Event
from abc import ABC, abstractmethod
from threading import Event
from queue import PriorityQueue, Empty
class Action():
# Should hold the data representing an action
# Actions are applied to a State in State.mutate
def __init__(self, player, data):
self.player = player
self.data = data
def __eq__(self, other):
# This should be implemented differently
# Two actions of different generations will never be compared
if type(other) != type(self):
return False
return str(self.data) == str(other.data)
def __str__(self):
# should return visual representation of this action
# should start with < and end with >
return "<P"+str(self.player)+"-"+str(self.data)+">"
class Universe():
def newOpen(self, node):
pass
def merge(self, node):
return node
def clearPQ(self):
pass
def iter(self):
return []
def activateEdge(self, head):
pass
class QueueingUniverse(Universe):
def __init__(self):
self.pq = []
def newOpen(self, node):
heapq.headpush(self.pq, (node.priority, node))
def clearPQ(self):
self.pq = []
def iter(self):
yield heapq.heappop(self.pq)
def activateEdge(self, head):
head._activateEdge()
class State(ABC):
# Hold a representation of the current game-state
# Allows retriving avaible actions (getAvaibleActions) and applying them (mutate)
# Mutations return a new State and should not have any effect on the current State
# Allows checking itself for a win (checkWin) or scoring itself based on a simple heuristic (getScore)
# The calculated score should be 0 when won; higher when in a worse state; highest for loosing
# getPriority is used for prioritising certain Nodes / States when expanding / walking the tree
def __init__(self, curPlayer=0, generation=0, playersNum=2):
self.curPlayer = curPlayer
self.generation = generation
self.playersNum = playersNum
@abstractmethod
def mutate(self, action):
# Returns a new state with supplied action performed
# self should not be changed
return State(curPlayer=(self.curPlayer+1) % self.playersNum, generation=self.generation+1, playersNum=self.playersNum)
@abstractmethod
def getAvaibleActions(self):
# Should return an array of all possible actions
return []
# improveMe
def getPriority(self, score, cascadeMemory=None):
# Used for ordering the priority queue
# Priority should not change for the same root
# Lower prioritys get worked on first
# Higher generations should have higher priority
# Higher cascadeMemory (more influence on higher-order-scores) should have lower priority
return score + self.generation*0.5 - cascadeMemory*0.35
@abstractmethod
def checkWin(self):
# -1 -> Draw
# None -> Not ended
# n e N -> player n won
return None
# improveMe
def getScoreFor(self, player):
# 0 <= score <= 1; should return close to zero when we are winning
w = self.checkWin()
if w == None:
return 0.5
if w == player:
return 0
if w == -1:
return 0.9
return 1
@abstractmethod
def __str__(self):
# return visual rep of state
return "[#]"
@abstractmethod
def getTensor(self, phase='default'):
return torch.tensor([0])
@classmethod
def getModel():
pass
def getScoreNeural(self):
return self.model(self.getTensor())
class Node():
def __init__(self, state, universe=None, parent=None, lastAction=None):
self.state = state
if universe==None:
universe = Universe()
self.universe = universe
self.parent = parent
self.lastAction = lastAction
self._childs = None
self._scores = [None]*self.state.playersNum
self._strongs = [None]*self.state.playersNum
self._alive = True
self._cascadeMemory = 0 # Used for our alternative to alpha-beta pruning
def kill(self):
self._alive = False
def revive(self):
self._alive = True
@property
def childs(self):
if self._childs == None:
self._expand()
return self._childs
def _expand(self):
self._childs = []
actions = self.state.getAvaibleActions()
for action in actions:
newNode = Node(self.state.mutate(action), self.universe, self, action)
self._childs.append(self.universe.merge(newNode))
def getStrongFor(self, player):
if self._strongs[player]!=None:
return self._strongs[player]
else:
return self.getScoreFor(player)
def _pullStrong(self): # Currently Expecti-Max
strongs = [None]*self.playersNum
for p in range(self.playersNum):
cp = self.state.curPlayer
if cp == p: # P owns the turn; controlls outcome
best = 1000000000
for c in self.childs:
if c.getStrongFor(p) < best:
best = c.getStrongFor(p)
strongs[p] = best
else:
scos = [(c.getStrongFor(p), c.getStrongFor(cp)) for c in self.childs]
scos.sort(key=lambda x: x[1])
betterHalf = scos[:max(3,int(len(scos)/3))]
myScores = [bh[0]**2 for bh in betterHalf]
strongs[p] = sqrt(myScores[0]*0.75 + sum(myScores)/(len(myScores)*4))
update = False
for s in range(self.playersNum):
if strongs[s] != self._strongs[s]:
update = True
break
self._strongs = strongs
if update:
if self.parent!=None:
cascade = self.parent._pullStrong()
else:
cascade = 2
self._cascadeMemory = self._cascadeMemory/2 + cascade
return cascade + 1
self._cascadeMemory /= 2
return 0
def forceStrong(self, depth=3):
if depth==0:
self.strongDecay()
else:
if len(self.childs):
for c in self.childs:
c.forceStrong(depth-1)
else:
self.strongDecay()
def strongDecay(self):
if self._strongs == [None]*self.playersNum:
if not self.scoresAvaible():
self._calcScores()
self._strongs = self._scores
return self.parent._pullStrong()
return None
def getSelfScore(self):
return self.getScoreFor(self.curPlayer)
def getScoreFor(self, player):
if self._scores[player] == None:
self._calcScore(player)
return self._scores[player]
def scoreAvaible(self, player):
return self._scores[player] != None
def scoresAvaible(self):
for p in self._scores:
if p==None:
return False
return True
def strongScoresAvaible(self):
for p in self._strongs:
if p==None:
return False
return True
def _calcScores(self):
for p in range(self.state.playersNum):
self._calcScore(p)
def _calcScore(self, player):
self._scores[player] = self.state.getScoreFor(player)
@property
def priority(self):
return self.state.getPriority(self.score)
@property
def playersNum(self):
return self.state.playersNum
@property
def avaibleActions(self):
r = []
for c in self.childs:
r.append(c.lastAction)
return r
@property
def curPlayer(self):
return self.state.curPlayer
def _activateEdge(self):
if not self.strongScoresAvaible():
self.universe.newOpen(self)
else:
for c in self.childs:
c._activateEdge()
def __str__(self):
s = []
if self.lastAction == None:
s.append("[ {ROOT} ]")
else:
s.append("[ -> "+str(self.lastAction)+" ]")
s.append("[ turn: "+str(self.state.curPlayer)+" ]")
s.append(str(self.state))
s.append("[ score: "+str(self.getSelfScore())+" ]")
return '\n'.join(s)
def choose(txt, options):
while True:
print('[*] '+txt)
for num,opt in enumerate(options):
print('['+str(num+1)+'] ' + str(opt))
inp = input('[> ')
try:
n = int(inp)
if n in range(1,len(options)+1):
return options[n-1]
except:
pass
for opt in options:
if inp==str(opt):
return opt
if len(inp)==1:
for opt in options:
if inp==str(opt)[0]:
return opt
print('[!] Invalid Input.')
class Runtime():
def __init__(self, initState):
self.head = Node(initState)
def performAction(self, action):
for c in self.head.childs:
if action == c.lastAction:
self.head.universe.clearPQ()
self.head.kill()
self.head = c
self.head.universe.activateEdge(self.head)
return
raise Exception('No such action avaible...')
def turn(self, bot=None):
print(str(self.head))
if bot==None:
c = choose('?', ['human', 'bot', 'undo'])
if c=='undo':
self.head = self.head.parent
return
bot = c=='bot'
if bot:
self.head.forceStrong(7)
opts = []
for c in self.head.childs:
opts.append((c, c.getStrongFor(self.head.curPlayer)))
opts.sort(key=lambda x: x[1])
print('[i] Evaluated Options:')
for o in opts:
#print('['+str(o[0])+']' + str(o[0].lastAction) + " (Score: "+str(o[1])+")")
print('[ ]' + str(o[0].lastAction) + " (Score: "+str(o[1])+")")
print('[#] I choose to play: ' + str(opts[0][0].lastAction))
self.performAction(opts[0][0].lastAction)
else:
action = choose('What does player '+str(self.head.curPlayer)+' want to do?', self.head.avaibleActions)
self.performAction(action)
def game(self, bots=None):
if bots==None:
bots = [None]*self.head.playersNum
while True:
self.turn(bots[self.head.curPlayer])