Compare commits

...

7 Commits
master ... gp

Author SHA1 Message Date
06712ee027 GPR using Node2Vec embedding cosine similarity kernels done 2022-02-25 00:44:58 +01:00
02e912d4ff More GNTM 2022-02-24 22:29:52 +01:00
e87288a927 GNTM gucken 2022-02-24 21:53:54 +01:00
85c800d39e fixes 2022-02-24 20:18:31 +01:00
0dc40c5635 lol 2022-02-24 20:15:13 +01:00
7c16b8044e Revert "implemented neuralBins (performance is bad...)"
This reverts commit bd53a83058.
2022-02-24 20:14:13 +01:00
b10fcac016 WIP 2022-02-24 20:12:08 +01:00
2 changed files with 139 additions and 75 deletions

View File

@ -7,8 +7,6 @@ import copy
import random
import requests
from collections import defaultdict
import numpy as np
import pandas as pd
from scipy.stats import norm
@ -20,6 +18,8 @@ import plotly.graph_objects as go
import wikipedia
from py.gp import *
def getAllAuthors(books):
authors = set()
for book in books:
@ -389,8 +389,11 @@ def removeUselessSeries(G, minSco=0):
def scoreOpinions(G, globMu, globStd):
for n in list(G.nodes):
node = G.nodes[n]
feedbacks = []
if node['t'] not in ['book']:
if node['t'] not in ['book', 'newBooks']:
if 'gpr_score' in node:
feedbacks = [node['gpr_score']]
else:
feedbacks = []
adjacens = list(G.adj[n].keys())
for adj in adjacens:
adjNode = G.nodes[adj]
@ -399,16 +402,15 @@ def scoreOpinions(G, globMu, globStd):
if len(feedbacks):
node['mean'], node['std'] = norm.fit(feedbacks)
node['se'] = globStd / math.sqrt(len(feedbacks))
ratio = len(feedbacks) / len(adjacens)
node['score'] = node['mean']
node['feedbacks'] = feedbacks
else:
node['score'] = None
def scoreUnread(G, globMu, globStd):
neuralBins = defaultdict(list)
feedbacks = [globMu-globStd, globMu+globStd]
for n in list(G.nodes):
feedbacks = [globMu]
ws = [['mu']]
node = G.nodes[n]
if node['t'] == 'book':
if node['rating'] == None:
@ -416,41 +418,47 @@ def scoreUnread(G, globMu, globStd):
for adj in adjacens:
adjNode = G.nodes[adj]
if 'score' in adjNode and adjNode['score'] != None:
w = adjNode['t']
w = [adjNode['t'], G[n][adj]['weight'] if 'weight' in G[n][adj] else 1]
for fb in adjNode['feedbacks']:
neuralBins[w].append(fb)
feedbacks.append(fb)
node['mean'], node['std'] = norm.fit(feedbacks)
node['median'] = np.percentile(feedbacks, [50], method='linear')[0]
node['se'] = globStd / math.sqrt(len(feedbacks))
neuralBins['mean'] = [node['mean']]
neuralBins['sigma'] = [node['std']]
neuralBins['median'] = [node['median']]
neuralBins['se'] = [node['se']]
neuralBins['pagerank'] = [node['pagerank_score']]
if 'tgb_rank' in node:
neuralBins['tgbrank'] = [10/math.ln10(10+node['tgb_rank'])]
neuralBins['bias'] = [globMu]
score = 0
nb = dict(neuralBins)
act = {}
for b in nb:
act[b] = sum(nb[b])/len(nb[b])
score += act[b] * getWeightForType(b)
score /= sum([abs(getWeightForType(b)) for b in nb])
node['score'] = math.tanh(score/10)*10
node['_act'] = act
ws.append(w)
if len(feedbacks):
node['mean'], node['std'] = norm.fit(feedbacks)
node['median'] = np.percentile(feedbacks, [50], method='linear')[0]
node['se'] = globStd / math.sqrt(len(feedbacks))
feedbacks.append(node['pagerank_score'])
ws.append(['pagerank'])
#feedbacks.append(10/math.ln10(10+node['tgb_rank']) if 'tgb_rank' in node else 0)
#ws.append(['tgb_rank'])
feedbacks.append(node['std'])
ws.append(['sigma'])
#feedbacks.append(node['median'])
#ws.append(['median'])
#feedbacks.append(node['se'])
#ws.append(['se'])
feedbacks.append(globMu)
ws.append(['bias'])
if 'gpr_score' in node:
feedbacks.append(node['gpr_score'])
ws.append(['gpr_score'])
feedbacks.append(node['gpr_se'])
ws.append(['gpr_se'])
node['score'] = sum([fb*getWeightForType(w[0], w[1] if len(w)>1 else 1) for fb, w in zip(feedbacks, ws)])/sum([getWeightForType(w[0], w[1] if len(w)>1 else 1) for w in ws])
node['_act'] = feedbacks
node['_wgh'] = ws
else:
node['score'] = globMu + errorFac*globStd + len(feedbacks)*0.0000000001
if 'series' in node:
if node['series_index'] == 1.0:
node['score'] += 0.000000001
def getWeightForType(nodeType):
def getWeightForType(nodeType, edgeWeight=1):
global weights
if nodeType not in weights:
weights[nodeType] = 0.1
saveWeights(weights)
print('[i] neuralWeights-Vector extended with >'+nodeType+'<')
return weights[nodeType]
w = weights[nodeType]
if nodeType == 'topList':
return edgeWeight*w
else:
return w
def printBestList(G, t='book', num=-1):
bestlist = []
@ -808,6 +816,9 @@ def buildFullGraph(darkMode=False):
graphAddTopLists(G, books, darkMode=darkMode)
graphAddSeries(G, books, darkMode=darkMode)
graphAddTags(G, books, darkMode=darkMode)
genGprScores(G, 'gpr_score', 'gpr_se')
return G, books
@ -1109,23 +1120,6 @@ def waveFlow(G, node, n, dist, menge, firstEdge=False):
if node in bestlist or node in keeplist:
waveFlow(G, node, m, dist, menge, firstEdge=firstEdge)
def gensimTokensForLines(lines):
for i, line in enumerate(lines):
tokens = gensim.utils.simple_preprocess(line)
if tokens_only:
yield tokens
else:
# For training data, add tags
yield gensim.models.doc2vec.TaggedDocument(tokens, [i])
def buildDoc2Vec(books):
import gensim
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'book':
pass
gensimTokensForLines(lines)
def shell(G, books, mu, std):
from ptpython.repl import embed
embed(globals(), locals())
@ -1199,7 +1193,7 @@ def findNewBooks(G, books, mu, num=-1, minRecSco=5):
# while batchSize is implemented, we only get a good gonvergence when we disable it (batchSize=-1)
# but might be necessary to enable later for a larger libary for better training performance...
# maybe try again for 128 books?
def evaluateFitness(books, batchSize=16, debugPrint=False):
def evaluateFitness(books, batchSize=-1, debugPrint=False, doGPR=True):
global weights
G = buildBookGraph(books)
graphAddAuthors(G, books)
@ -1208,19 +1202,20 @@ def evaluateFitness(books, batchSize=16, debugPrint=False):
graphAddSeries(G, books)
graphAddTags(G, books)
runPagerank(G)
if doGPR:
genGprScores(G, 'gpr_score', 'gpr_se')
ratedBooks = [n for n in list(G.nodes) if 'rating' in G.nodes[n] and G.nodes[n]['rating'] != None]
boundsLoss = 0
linSepLoss = []
errSq = []
gradient = {}
for w in weights:
gradient[w] = 0
for wt in weights:
gradient[wt] = 0
mu, sigma = genScores(G, books)
batch = random.sample(ratedBooks, batchSize) if batchSize!=-1 and len(ratedBooks) > batchSize else ratedBooks
for b in G.nodes:
if b in ratedBooks:
node = G.nodes[b]
batch = random.sample(ratedBooks, batchSize) if batchSize!=-1 and len(ratedBooks) > batchSize else ratedBooks
if b in batch:
rating = G.nodes[b]['rating']
G.nodes[b]['rating'] = None
_, _ = genScores(G, books, calcPagerank=False)
@ -1229,20 +1224,17 @@ def evaluateFitness(books, batchSize=16, debugPrint=False):
else:
errSq.append((rating - G.nodes[b]['score'])**2)
G.nodes[b]['rating'] = rating
if b in batch:
for wt in weights:
scoreB = 0
for w in node['_act']:
scoreB += node['_act'][w] * (getWeightForType(w) + (0.001 if wt==w else 0))
scoreB /= sum([abs(getWeightForType(w)) for w in node['_act']])
scoreB = math.tanh(scoreB/10)*10
gradient[wt] += ((rating - G.nodes[b]['score'])**2 - (rating - scoreB)**2)*1000
for wt in weights:
scoreB = sum([a*(1.001 if wt==w[0] else 1)*weights[w[0]]*(w[1] if len(w)>1 else 1) for a,w in zip(G.nodes[b]['_act'], G.nodes[b]['_wgh'])])/sum([(1.001 if wt==w[0] else 1)*weights[w[0]]*(w[1] if len(w)>1 else 1) for w in G.nodes[b]['_wgh']])
gradient[wt] += ((rating - G.nodes[b]['score'])**2 - (rating - scoreB)**2)*1000
regressionLoss = sum([max(0,abs(w)-1)**2 for w in weights.values()]) # no punishment if w within -1 and 1
for wt in weights:
if abs(weights[wt]) > 1.0:
gradient[wt] -= weights[wt]*3
gradient[wt] -= weights[wt]*10
else:
gradient[wt] -= weights[wt]*1
for g in gradient:
gradient[g] /= len(batch)
gradient[g] /= len(errSq)
if debugPrint:
print(sum(errSq)/len(errSq), 0.001*regressionLoss)
fit = sum(errSq)/len(errSq) + 0.001*regressionLoss
@ -1258,7 +1250,7 @@ def train(initGamma, full=True):
books = loadBooksFromDB()
bestWeights = copy.copy(weights)
mse, gradient = evaluateFitness(books)
delta = math.sqrt(sum(gradient[g]**2 for g in gradient)/len(gradient))
delta = sum(gradient[g]**2 for g in gradient)
best_mse = mse
stagLen = 0
goal = 1.0e-4
@ -1271,11 +1263,8 @@ def train(initGamma, full=True):
print({'mse': mse, 'gamma': gamma, 'delta': delta})
delta = sum(gradient[g]**2 for g in gradient)
for wt in weights:
if wt in gradient:
weights[wt] += gamma*gradient[wt]/math.sqrt(delta)
#else:
# del weights[wt]
mse, gradient = evaluateFitness(books)
weights[wt] += gamma*gradient[wt]/math.sqrt(delta)
mse, gradient = evaluateFitness(books, doGPR=False)
if mse < last_mse:
gamma = gamma*1.25
else:
@ -1312,7 +1301,7 @@ def loadWeights():
with open('neuralWeights.json', 'r') as f:
weights = json.loads(f.read())
except IOError:
weights = {"topList": 0.15, "recommender": 0.30, "author": 0.70, "series": 0.05, "tag": 0.05, "pagerank": 0.05, "mu": 0.50, "sigma": 0.30, "bias": 0.25} #, "tgb_rank": 0.10}
weights = {"topList": 0.15, "recommender": 0.30, "author": 0.70, "series": 0.05, "tag": 0.05, "pagerank": 0.05, "mu": 0.50, "sigma": 0.30, "bias": 0.25, "gpr_score": 1.00, "gpr_se": -0.50} #, "tgb_rank": 0.10}
return weights
def cliInterface():

75
py/gp.py Normal file
View File

@ -0,0 +1,75 @@
import numpy as np
from node2vec import Node2Vec
from sklearn.gaussian_process.kernels import Kernel, Hyperparameter
from sklearn.gaussian_process.kernels import GenericKernelMixin
from sklearn.gaussian_process import GaussianProcessRegressor
#from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.base import clone
class BookKernel(GenericKernelMixin, Kernel):
def __init__(self, wv):
self.wv = wv
def _f(self, s1, s2):
"""
kernel value between a pair of sequences
"""
s = self.wv.similarity(s1, s2)**2*0.99 + 0.01
if s <= 0:
print('bad!')
return s
def __call__(self, X, Y=None, eval_gradient=False):
if Y is None:
Y = X
if eval_gradient:
return (
np.array([[self._f(x, y) for y in Y] for x in X])
)
else:
return np.array([[self._f(x, y) for y in Y] for x in X])
#return np.array(self.wv.n_similarity(X, Y))
def diag(self, X):
return self(X)
def is_stationary(self):
return False
def clone_with_theta(self, theta):
cloned = clone(self)
cloned.theta = theta
return cloned
def genGprScores(G, scoreName='gpr_score', stdName='gpr_std'):
print('[\] Constructing Feature-Space-Projector')
node2vec = Node2Vec(G, dimensions=32, walk_length=16, num_walks=128, workers=8)
print('[\] Fitting Embeddings for Kernel')
model = node2vec.fit(window=8, min_count=1, batch_words=4)
wv = model.wv
print('[\] Constructing Kernel')
kernel = BookKernel(wv)
print('[\] Fitting GP')
X, y = [], []
for n in G.nodes:
node = G.nodes[n]
if 'rating' in node and node['rating']!=None:
X.append(n)
y.append(node['rating'])
gpr = GaussianProcessRegressor(kernel=kernel, random_state=3141, alpha=1e-8).fit(X, y)
print('[\] Inferencing GP')
X = []
for n in G.nodes:
node = G.nodes[n]
if not 'rating' in node or node['rating']==None:
X.append(n)
y, stds = gpr.predict(X, return_std=True)
i=0
for n in G.nodes:
node = G.nodes[n]
if not 'rating' in node or node['rating']==None:
s, std = y[i], stds[i][i][0]
i+=1
node[scoreName], node[stdName] = float(s), float(std)