black formatting and update tuned_reward for T1

This commit is contained in:
Younggyo Seo 2025-05-29 08:29:44 +00:00
parent 65a55433fc
commit c156ba93fb
2 changed files with 60 additions and 38 deletions

View File

@ -77,9 +77,17 @@ def make_env(
):
# Make training environment
train_env_cfg = registry.get_default_config(env_name)
if use_tuned_reward:
is_humanoid_task = env_name in [
"G1JoystickRoughTerrain",
"G1JoystickFlatTerrain",
"T1JoystickRoughTerrain",
"T1JoystickFlatTerrain",
]
if use_tuned_reward and is_humanoid_task:
# NOTE: Tuned reward for G1. Used for producing Figure 7 in the paper.
assert env_name in ["G1JoystickRoughTerrain", "G1JoystickFlatTerrain"]
# Somehow it works reasonably for T1 as well.
# However, see `sim2real.md` for sim-to-real RL with Booster T1
train_env_cfg.reward_config.scales.energy = -5e-5
train_env_cfg.reward_config.scales.action_rate = -1e-1
train_env_cfg.reward_config.scales.torques = -1e-3
@ -90,13 +98,6 @@ def make_env(
train_env_cfg.reward_config.scales.ang_vel_xy = -0.3
train_env_cfg.reward_config.scales.orientation = -5.0
is_humanoid_task = env_name in [
"G1JoystickRoughTerrain",
"G1JoystickFlatTerrain",
"T1JoystickRoughTerrain",
"T1JoystickFlatTerrain",
]
if is_humanoid_task and not use_push_randomization:
train_env_cfg.push_config.enable = False
train_env_cfg.push_config.magnitude_range = [0.0, 0.0]

View File

@ -23,7 +23,7 @@ class SimpleReplayBuffer(nn.Module):
"""
A simple replay buffer that stores transitions in a circular buffer.
Supports n-step returns and asymmetric observations.
When playground_mode=True, critic_observations are treated as a concatenation of
regular observations and privileged observations, and only the privileged part is stored
to save memory.
@ -62,10 +62,14 @@ class SimpleReplayBuffer(nn.Module):
# Only store the privileged part of observations (n_critic_obs - n_obs)
self.privileged_obs_size = n_critic_obs - n_obs
self.privileged_observations = torch.zeros(
(n_env, buffer_size, self.privileged_obs_size), device=device, dtype=torch.float
(n_env, buffer_size, self.privileged_obs_size),
device=device,
dtype=torch.float,
)
self.next_privileged_observations = torch.zeros(
(n_env, buffer_size, self.privileged_obs_size), device=device, dtype=torch.float
(n_env, buffer_size, self.privileged_obs_size),
device=device,
dtype=torch.float,
)
else:
# Store full critic observations
@ -98,11 +102,11 @@ class SimpleReplayBuffer(nn.Module):
if self.asymmetric_obs:
critic_observations = tensor_dict["critic_observations"]
next_critic_observations = tensor_dict["next"]["critic_observations"]
if self.playground_mode:
# Extract and store only the privileged part
privileged_observations = critic_observations[:, self.n_obs:]
next_privileged_observations = next_critic_observations[:, self.n_obs:]
privileged_observations = critic_observations[:, self.n_obs :]
next_privileged_observations = next_critic_observations[:, self.n_obs :]
self.privileged_observations[:, ptr] = privileged_observations
self.next_privileged_observations[:, ptr] = next_privileged_observations
else:
@ -145,17 +149,23 @@ class SimpleReplayBuffer(nn.Module):
if self.asymmetric_obs:
if self.playground_mode:
# Gather privileged observations
priv_obs_indices = indices.unsqueeze(-1).expand(-1, -1, self.privileged_obs_size)
priv_obs_indices = indices.unsqueeze(-1).expand(
-1, -1, self.privileged_obs_size
)
privileged_observations = torch.gather(
self.privileged_observations, 1, priv_obs_indices
).reshape(self.n_env * batch_size, self.privileged_obs_size)
next_privileged_observations = torch.gather(
self.next_privileged_observations, 1, priv_obs_indices
).reshape(self.n_env * batch_size, self.privileged_obs_size)
# Concatenate with regular observations to form full critic observations
critic_observations = torch.cat([observations, privileged_observations], dim=1)
next_critic_observations = torch.cat([next_observations, next_privileged_observations], dim=1)
critic_observations = torch.cat(
[observations, privileged_observations], dim=1
)
next_critic_observations = torch.cat(
[next_observations, next_privileged_observations], dim=1
)
else:
# Gather full critic observations
critic_obs_indices = indices.unsqueeze(-1).expand(
@ -188,13 +198,17 @@ class SimpleReplayBuffer(nn.Module):
if self.asymmetric_obs:
if self.playground_mode:
# Gather privileged observations
priv_obs_indices = indices.unsqueeze(-1).expand(-1, -1, self.privileged_obs_size)
priv_obs_indices = indices.unsqueeze(-1).expand(
-1, -1, self.privileged_obs_size
)
privileged_observations = torch.gather(
self.privileged_observations, 1, priv_obs_indices
).reshape(self.n_env * batch_size, self.privileged_obs_size)
# Concatenate with regular observations to form full critic observations
critic_observations = torch.cat([observations, privileged_observations], dim=1)
critic_observations = torch.cat(
[observations, privileged_observations], dim=1
)
else:
# Gather full critic observations
critic_obs_indices = indices.unsqueeze(-1).expand(
@ -283,37 +297,44 @@ class SimpleReplayBuffer(nn.Module):
if self.asymmetric_obs:
if self.playground_mode:
# Gather final privileged observations
final_next_privileged_observations = self.next_privileged_observations.gather(
1,
final_next_obs_indices.unsqueeze(-1).expand(
-1, -1, self.privileged_obs_size
),
final_next_privileged_observations = (
self.next_privileged_observations.gather(
1,
final_next_obs_indices.unsqueeze(-1).expand(
-1, -1, self.privileged_obs_size
),
)
)
# Reshape for output
next_privileged_observations = final_next_privileged_observations.reshape(
self.n_env * batch_size, self.privileged_obs_size
next_privileged_observations = (
final_next_privileged_observations.reshape(
self.n_env * batch_size, self.privileged_obs_size
)
)
# Concatenate with next observations to form full next critic observations
next_observations_reshaped = final_next_observations.reshape(
self.n_env * batch_size, self.n_obs
)
next_critic_observations = torch.cat(
[next_observations_reshaped, next_privileged_observations], dim=1
[next_observations_reshaped, next_privileged_observations],
dim=1,
)
else:
# Gather final next critic observations directly
final_next_critic_observations = self.next_critic_observations.gather(
1,
final_next_obs_indices.unsqueeze(-1).expand(
-1, -1, self.n_critic_obs
),
final_next_critic_observations = (
self.next_critic_observations.gather(
1,
final_next_obs_indices.unsqueeze(-1).expand(
-1, -1, self.n_critic_obs
),
)
)
next_critic_observations = final_next_critic_observations.reshape(
self.n_env * batch_size, self.n_critic_obs
)
# Reshape everything to batch dimension
rewards = n_step_rewards.reshape(self.n_env * batch_size)
dones = final_dones.reshape(self.n_env * batch_size)