5.7 KiB
NuCon (Nucleares Controller)
NuCon is a Python library designed to interface with and control parameters in Nucleares, a nuclear reactor simulation game. It provides a robust, type-safe foundation for reading and writing game parameters, allowing users to easily create their own automations and control systems.
NuCon further provides a work in progress implementation of a reinforcement learning environment for training control policies.
Features
- Enum-based parameter system for type safety and code clarity
- Support for various parameter types including floats, integers, booleans, strings, and custom enums
- Read and write capabilities for game parameters
- Custom truthy values for status enums to simplify conditional logic
- Dummy mode for testing without connecting to the game
- Batch operations for getting multiple parameters at once
Installation
To install NuCon, clone this repository and install via pip:
pip install -e .
Usage
Here's a basic example of how to use NuCon:
from nucon import Nucon, BreakerStatus
# Set the base URL for the game's API (if different from default)
Nucon.set_base_url("http://localhost:8080/")
# Enable dummy mode for testing (optional)
Nucon.set_dummy_mode(True)
# Read a parameter
core_temp = Nucon.CORE_TEMP.value
print(f"Core Temperature: {core_temp}")
# Read a parameter with an enum type
pump_status = Nucon.COOLANT_CORE_CIRCULATION_PUMP_0_STATUS.value
print(f"Pump 0 Status: {pump_status}")
# Write to a parameter
Nucon.GENERATOR_0_BREAKER.value = BreakerStatus.OPEN # or True
print(f"Generator 0 Breaker Status: {Nucon.GENERATOR_0_BREAKER.value}")
# Use custom truthy values
if Nucon.COOLANT_CORE_CIRCULATION_PUMP_0_STATUS.value:
print("Pump 0 is active")
API Reference
The Nucon
enum contains all available parameters. Each parameter is defined with:
- An ID (string)
- A type (float, int, bool, str, or a custom Enum)
- A boolean indicating whether it's writable
Parameter properties:
Nucon.<PARAMETER>.value
: Get or set the current value of the parameter. Assigning a new value will write it to the game.Nucon.<PARAMETER>.param_type
: Get the type of the parameterNucon.<PARAMETER>.is_writable
: Check if the parameter is writableNucon.<PARAMETER>.enum_type
: Get the enum type of the parameter if it's an enum, otherwise None
Parameter methods:
Nucon.<PARAMETER>.read()
: Get the current value of the parameter (alias forvalue
)Nucon.<PARAMETER>.write(new_value, force=False)
: Write a new value to the parameter.force
will try to write even if the parameter is known as non-writable.
Class methods:
Nucon.get(parameter)
: Get the value of a specific parameter. Also accepts string parameter names.Nucon.set(parameter, value, force=False)
: Set the value of a specific parameter. Also accepts string parameter names.Nucon.get_all_readable()
: Get a list of all readable parameters (which is all parameters)Nucon.get_all_writable()
: Get a list of all writable parametersNucon.get_all()
: Get all parameter values as a dictionaryNucon.get_multiple(params)
: Get values for multiple specified parametersNucon.set_base_url(url)
: Set the base URL for the game's APINucon.set_dummy_mode(dummy_mode)
: Enable or disable dummy mode for testing
Custom Enum Types:
PumpStatus
: Enum for pump status (INACTIVE, ACTIVE_NO_SPEED_REACHED, ACTIVE_SPEED_REACHED, REQUIRES_MAINTENANCE, NOT_INSTALLED, INSUFFICIENT_ENERGY)PumpDryStatus
: Enum for pump dry status (ACTIVE_WITHOUT_FLUID, INACTIVE_OR_ACTIVE_WITH_FLUID)PumpOverloadStatus
: Enum for pump overload status (ACTIVE_AND_OVERLOAD, INACTIVE_OR_ACTIVE_NO_OVERLOAD)BreakerStatus
: Enum for breaker status (OPEN, CLOSED)
Reinforcement Learning (Work in Progress)
NuCon includes a preliminary Reinforcement Learning (RL) environment based on the OpenAI Gym interface. This feature is currently a work in progress and requires additional dependencies.
Additional Dependencies
To use the RL features, you'll need to install the following packages:
pip install gymnasium numpy
RL Environment
The NuconEnv
class in nucon/rl.py
provides a Gym-compatible environment for reinforcement learning tasks in the Nucleares simulation. Key features include:
- Observation space: Includes all readable parameters from the Nucon system.
- Action space: Encompasses all writable parameters in the Nucon system.
- Step function: Applies actions to the Nucon system and returns new observations.
- Objective function: Allows for custom objective functions to be defined for training.
Usage
Here's a basic example of how to use the RL environment:
from nucon.rl import NuconEnv
env = NuconEnv(objectives=['max_power'], seconds_per_step=5)
obs, info = env.reset()
for _ in range(1000):
action = env.action_space.sample() # Your agent here (instead of random)
obs, reward, terminated, truncated, info = env.step(action)
if terminated or truncated:
obs, info = env.reset()
env.close()
Testing
NuCon includes a test suite to verify its functionality and compatibility with the Nucleares game.
Running Tests
To run the tests:
- Ensure the Nucleares game is running and accessible at http://localhost:8080/ (or update the URL in the test setup).
- Install pytest:
pip install pytest
- Run the tests:
pytest test/test.py
Test Coverage
The tests verify:
- Parameter types match their definitions in NuCon
- Writable parameters can be written to
- Non-writable parameters cannot be written to, even when force-writing
- Enum parameters and their custom truthy values behave correctly
Disclaimer
NuCon is an unofficial tool and is not affiliated with or endorsed by the creators of Nucleares.