68 lines
1.9 KiB
YAML
68 lines
1.9 KiB
YAML
|
name: DEFAULT
|
||
|
project: Spikey
|
||
|
|
||
|
slurm:
|
||
|
name: 'Spikey_{config[name]}'
|
||
|
partitions:
|
||
|
- single
|
||
|
standard_output: ./reports/slurm/out_%A_%a.log
|
||
|
standard_error: ./reports/slurm/err_%A_%a.log
|
||
|
num_parallel_jobs: 50
|
||
|
cpus_per_task: 4
|
||
|
memory_per_cpu: 1000
|
||
|
time_limit: 1440 # in minutes
|
||
|
ntasks: 1
|
||
|
venv: '.venv/bin/activate'
|
||
|
sh_lines:
|
||
|
- 'mkdir -p {tmp}/wandb'
|
||
|
- 'mkdir -p {tmp}/local_pycache'
|
||
|
- 'export PYTHONPYCACHEPREFIX={tmp}/local_pycache'
|
||
|
|
||
|
runner: spikey
|
||
|
|
||
|
scheduler:
|
||
|
reps_per_version: 1
|
||
|
agents_per_job: 1
|
||
|
reps_per_agent: 1
|
||
|
|
||
|
wandb:
|
||
|
project: '{config[project]}'
|
||
|
group: '{config[name]}'
|
||
|
job_type: '{delta_desc}'
|
||
|
name: '{job_id}_{task_id}:{run_id}:{rand}={config[name]}_{delta_desc}'
|
||
|
tags:
|
||
|
- '{config[env][name]}'
|
||
|
- '{config[algo][name]}'
|
||
|
sync_tensorboard: False
|
||
|
monitor_gym: False
|
||
|
save_code: False
|
||
|
|
||
|
---
|
||
|
name: Test
|
||
|
|
||
|
preprocessing:
|
||
|
use_delta_encoding: true # Whether to use delta encoding.
|
||
|
|
||
|
predictor:
|
||
|
type: lstm # Options: 'lstm', 'fixed_input_nn'
|
||
|
input_size: 1 # Input size for the LSTM predictor.
|
||
|
hidden_size: 128 # Hidden size for the LSTM or Fixed Input NN predictor.
|
||
|
num_layers: 2 # Number of layers for the LSTM predictor.
|
||
|
fixed_input_size: 10 # Input size for the Fixed Input NN predictor. Only used if type is 'fixed_input_nn'.
|
||
|
|
||
|
training:
|
||
|
epochs: 10 # Number of training epochs.
|
||
|
batch_size: 32 # Batch size for training.
|
||
|
learning_rate: 0.001 # Learning rate for the optimizer.
|
||
|
eval_freq: 2 # Frequency of evaluation during training (in epochs).
|
||
|
save_path: models # Directory to save the best model and encoder.
|
||
|
num_points: 1000 # Number of data points to visualize
|
||
|
|
||
|
bitstream_encoding:
|
||
|
type: arithmetic # Use arithmetic encoding.
|
||
|
|
||
|
data:
|
||
|
url: https://content.neuralink.com/compression-challenge/data.zip # URL to download the dataset.
|
||
|
directory: data # Directory to extract and store the dataset.
|
||
|
split_ratio: 0.8 # Ratio to split the data into train and test sets.
|