Spikey/config.yaml

68 lines
1.9 KiB
YAML
Raw Normal View History

2024-05-24 22:01:59 +02:00
name: DEFAULT
project: Spikey
slurm:
name: 'Spikey_{config[name]}'
partitions:
- single
standard_output: ./reports/slurm/out_%A_%a.log
standard_error: ./reports/slurm/err_%A_%a.log
num_parallel_jobs: 50
cpus_per_task: 4
memory_per_cpu: 1000
time_limit: 1440 # in minutes
ntasks: 1
venv: '.venv/bin/activate'
sh_lines:
- 'mkdir -p {tmp}/wandb'
- 'mkdir -p {tmp}/local_pycache'
- 'export PYTHONPYCACHEPREFIX={tmp}/local_pycache'
runner: spikey
scheduler:
reps_per_version: 1
agents_per_job: 1
reps_per_agent: 1
wandb:
project: '{config[project]}'
group: '{config[name]}'
job_type: '{delta_desc}'
name: '{job_id}_{task_id}:{run_id}:{rand}={config[name]}_{delta_desc}'
tags:
- '{config[env][name]}'
- '{config[algo][name]}'
sync_tensorboard: False
monitor_gym: False
save_code: False
---
name: Test
preprocessing:
use_delta_encoding: true # Whether to use delta encoding.
predictor:
type: lstm # Options: 'lstm', 'fixed_input_nn'
input_size: 1 # Input size for the LSTM predictor.
hidden_size: 128 # Hidden size for the LSTM or Fixed Input NN predictor.
num_layers: 2 # Number of layers for the LSTM predictor.
fixed_input_size: 10 # Input size for the Fixed Input NN predictor. Only used if type is 'fixed_input_nn'.
training:
epochs: 10 # Number of training epochs.
batch_size: 32 # Batch size for training.
learning_rate: 0.001 # Learning rate for the optimizer.
eval_freq: 2 # Frequency of evaluation during training (in epochs).
save_path: models # Directory to save the best model and encoder.
num_points: 1000 # Number of data points to visualize
bitstream_encoding:
type: arithmetic # Use arithmetic encoding.
data:
url: https://content.neuralink.com/compression-challenge/data.zip # URL to download the dataset.
directory: data # Directory to extract and store the dataset.
split_ratio: 0.8 # Ratio to split the data into train and test sets.