Spikey/train.py

122 lines
6.0 KiB
Python
Raw Normal View History

2024-05-24 22:01:59 +02:00
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import wandb
import random
import os
import pickle
from data_processing import delta_encode, delta_decode, save_wav
from utils import visualize_prediction, plot_delta_distribution
from bitstream import ArithmeticEncoder
2024-05-25 00:53:30 +02:00
def pad_sequence(sequence, max_length):
padded_seq = np.zeros((max_length, *sequence.shape[1:]))
padded_seq[:sequence.shape[0], ...] = sequence
return padded_seq
2024-05-24 23:02:24 +02:00
def evaluate_model(model, data, use_delta_encoding, encoder, sample_rate=19531, epoch=0):
2024-05-24 22:01:59 +02:00
compression_ratios = []
identical_count = 0
all_deltas = []
2024-05-25 00:53:30 +02:00
for i, file_data in enumerate(data):
file_data = torch.tensor(file_data, dtype=torch.float32).unsqueeze(1).to(model.device)
2024-05-24 23:02:24 +02:00
encoded_data = model.encode(file_data.squeeze(1).cpu().numpy())
2024-05-24 22:01:59 +02:00
encoder.build_model(encoded_data)
compressed_data = encoder.encode(encoded_data)
decompressed_data = encoder.decode(compressed_data, len(encoded_data))
if use_delta_encoding:
decompressed_data = delta_decode(decompressed_data)
2024-05-25 00:53:30 +02:00
# Ensure the lengths match
min_length = min(len(file_data), len(decompressed_data))
file_data = file_data[:min_length]
decompressed_data = decompressed_data[:min_length]
2024-05-24 22:01:59 +02:00
identical = np.allclose(file_data.cpu().numpy(), decompressed_data, atol=1e-5)
if identical:
identical_count += 1
compression_ratio = len(file_data) / len(compressed_data)
compression_ratios.append(compression_ratio)
2024-05-25 00:53:30 +02:00
predicted_data = model(torch.tensor(encoded_data, dtype=torch.float32).unsqueeze(1).to(model.device)).squeeze(1).detach().cpu().numpy()
2024-05-24 22:01:59 +02:00
if use_delta_encoding:
predicted_data = delta_decode(predicted_data)
2024-05-25 00:53:30 +02:00
# Ensure predicted_data is a flat list of floats
predicted_data = predicted_data[:min_length]
delta_data = [file_data[i].item() - predicted_data[i] for i in range(min_length)]
2024-05-24 22:01:59 +02:00
all_deltas.extend(delta_data)
2024-05-25 00:53:30 +02:00
if i == (epoch % len(data)):
visualize_prediction(file_data.cpu().numpy(), predicted_data, delta_data, sample_rate, epoch=epoch)
2024-05-24 22:01:59 +02:00
identical_percentage = (identical_count / len(data)) * 100
delta_plot_path = plot_delta_distribution(all_deltas, epoch)
2024-05-25 00:53:30 +02:00
wandb.log({"delta_distribution": wandb.Image(delta_plot_path)}, step=epoch)
2024-05-24 22:01:59 +02:00
return compression_ratios, identical_percentage
2024-05-24 23:02:24 +02:00
def train_model(model, train_data, test_data, epochs, batch_size, learning_rate, use_delta_encoding, encoder, eval_freq, save_path):
2024-05-24 22:01:59 +02:00
wandb.init(project="wav-compression")
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
best_test_score = float('inf')
2024-05-25 00:53:30 +02:00
model.to(model.device)
max_length = max([len(seq) for seq in train_data])
print(f"Max sequence length: {max_length}")
2024-05-24 22:01:59 +02:00
for epoch in range(epochs):
total_loss = 0
2024-05-25 00:53:30 +02:00
random.shuffle(train_data)
2024-05-24 22:01:59 +02:00
for i in range(0, len(train_data) - batch_size, batch_size):
2024-05-25 00:53:30 +02:00
batch_data = [pad_sequence(np.array(train_data[j]), max_length) for j in range(i, i+batch_size)]
batch_data = np.array(batch_data)
inputs = torch.tensor(batch_data, dtype=torch.float32).unsqueeze(2).to(model.device)
targets = torch.tensor(batch_data, dtype=torch.float32).unsqueeze(2).to(model.device)
2024-05-24 22:01:59 +02:00
outputs = model(inputs)
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
2024-05-25 00:53:30 +02:00
wandb.log({"epoch": epoch, "loss": total_loss}, step=epoch)
2024-05-24 22:01:59 +02:00
print(f'Epoch {epoch+1}/{epochs}, Loss: {total_loss}')
if (epoch + 1) % eval_freq == 0:
2024-05-24 23:02:24 +02:00
train_compression_ratios, train_identical_percentage = evaluate_model(model, train_data, use_delta_encoding, encoder, epoch=epoch)
test_compression_ratios, test_identical_percentage = evaluate_model(model, test_data, use_delta_encoding, encoder, epoch=epoch)
2024-05-24 22:01:59 +02:00
wandb.log({
"train_compression_ratio_mean": np.mean(train_compression_ratios),
"train_compression_ratio_std": np.std(train_compression_ratios),
"train_compression_ratio_min": np.min(train_compression_ratios),
"train_compression_ratio_max": np.max(train_compression_ratios),
"test_compression_ratio_mean": np.mean(test_compression_ratios),
"test_compression_ratio_std": np.std(test_compression_ratios),
"test_compression_ratio_min": np.min(test_compression_ratios),
"test_compression_ratio_max": np.max(test_compression_ratios),
"train_identical_percentage": train_identical_percentage,
"test_identical_percentage": test_identical_percentage,
2024-05-25 00:53:30 +02:00
}, step=epoch)
2024-05-24 22:01:59 +02:00
print(f'Epoch {epoch+1}/{epochs}, Train Compression Ratio: Mean={np.mean(train_compression_ratios)}, Std={np.std(train_compression_ratios)}, Min={np.min(train_compression_ratios)}, Max={np.max(train_compression_ratios)}, Identical={train_identical_percentage}%')
print(f'Epoch {epoch+1}/{epochs}, Test Compression Ratio: Mean={np.mean(test_compression_ratios)}, Std={np.std(test_compression_ratios)}, Min={np.min(test_compression_ratios)}, Max={np.max(test_compression_ratios)}, Identical={test_identical_percentage}%')
test_score = np.mean(test_compression_ratios)
if test_score < best_test_score:
best_test_score = test_score
model_path = os.path.join(save_path, f"best_model_epoch_{epoch+1}.pt")
encoder_path = os.path.join(save_path, f"best_encoder_epoch_{epoch+1}.pkl")
torch.save(model.state_dict(), model_path)
with open(encoder_path, 'wb') as f:
pickle.dump(encoder, f)
print(f'New highscore on test data! Model and encoder saved to {model_path} and {encoder_path}')