more tuning
This commit is contained in:
parent
5eab625cae
commit
37cd21957a
202
config.yaml
202
config.yaml
@ -105,6 +105,7 @@ training:
|
||||
save_path: models
|
||||
peer_gradients_factor: 0.25
|
||||
value_scale: 1000
|
||||
device: cpu
|
||||
|
||||
middle_out:
|
||||
residual: false
|
||||
@ -300,7 +301,7 @@ training:
|
||||
grid:
|
||||
training.value_scale: [1, 100, 1000, 10000]
|
||||
---
|
||||
name: FC_BSAbl2
|
||||
name: FC_BSAbl3 # 64 is best, everything >=64 is ok
|
||||
import: $
|
||||
|
||||
latent_projector:
|
||||
@ -327,4 +328,201 @@ training:
|
||||
device: cpu
|
||||
|
||||
grid:
|
||||
training.batch_size: [64, 128, 256]
|
||||
training.batch_size: [64, 128, 256]
|
||||
---
|
||||
name: FC_smol_master
|
||||
import: $
|
||||
|
||||
scheduler:
|
||||
reps_per_version: 8
|
||||
agents_per_job: 8
|
||||
|
||||
latent_projector:
|
||||
type: fc
|
||||
input_size: 195
|
||||
latent_size: 4
|
||||
layer_shapes: [20, 6]
|
||||
activations: ['ReLU', 'ReLU']
|
||||
|
||||
middle_out:
|
||||
region_latent_size: 4
|
||||
num_peers: 2
|
||||
residual: true
|
||||
|
||||
predictor:
|
||||
layer_shapes: [2]
|
||||
activations: ['ReLU']
|
||||
|
||||
training:
|
||||
epochs: 10000
|
||||
batch_size: 32
|
||||
num_batches: 1
|
||||
learning_rate: 0.01
|
||||
device: cpu
|
||||
---
|
||||
name: FC_smolTanh
|
||||
import: $
|
||||
|
||||
latent_projector:
|
||||
type: fc
|
||||
input_size: 195
|
||||
latent_size: 4
|
||||
layer_shapes: [20, 6]
|
||||
activations: ['Tanh', 'Tanh']
|
||||
|
||||
middle_out:
|
||||
region_latent_size: 4
|
||||
num_peers: 2
|
||||
residual: true
|
||||
|
||||
predictor:
|
||||
layer_shapes: [2]
|
||||
activations: ['Tanh']
|
||||
|
||||
training:
|
||||
epochs: 1024
|
||||
batch_size: 32
|
||||
num_batches: 1
|
||||
learning_rate: 0.01
|
||||
device: cpu
|
||||
---
|
||||
name: FOURIER_thin
|
||||
import: $
|
||||
|
||||
latent_projector:
|
||||
type: fourier
|
||||
input_size: 1953 # 0.1s
|
||||
latent_size: 4
|
||||
layer_shapes: [32, 8]
|
||||
activations: ['ReLU', 'ReLU']
|
||||
pass_raw_len: 195 # 0.01s
|
||||
|
||||
middle_out:
|
||||
region_latent_size: 4
|
||||
num_peers: 3
|
||||
residual: true
|
||||
|
||||
predictor:
|
||||
layer_shapes: [3]
|
||||
activations: ['ReLU']
|
||||
|
||||
training:
|
||||
epochs: 1024
|
||||
batch_size: 32
|
||||
num_batches: 1
|
||||
learning_rate: 0.01
|
||||
---
|
||||
name: FOURIER_thicc
|
||||
import: $
|
||||
|
||||
latent_projector:
|
||||
type: fourier
|
||||
input_size: 1953 # 0.1s
|
||||
latent_size: 8
|
||||
layer_shapes: [32, 8]
|
||||
activations: ['ReLU', 'ReLU']
|
||||
pass_raw_len: 195 # 0.01s
|
||||
|
||||
middle_out:
|
||||
region_latent_size: 8
|
||||
num_peers: 3
|
||||
residual: true
|
||||
|
||||
predictor:
|
||||
layer_shapes: [4]
|
||||
activations: ['ReLU']
|
||||
|
||||
training:
|
||||
epochs: 1024
|
||||
batch_size: 32
|
||||
num_batches: 1
|
||||
learning_rate: 0.01
|
||||
---
|
||||
name: FC_master2
|
||||
import: $
|
||||
|
||||
scheduler:
|
||||
reps_per_version: 8
|
||||
agents_per_job: 8
|
||||
|
||||
latent_projector:
|
||||
type: fc
|
||||
input_size: 1953
|
||||
latent_size: 4
|
||||
layer_shapes: [32, 8]
|
||||
activations: ['ReLU', 'ReLU']
|
||||
|
||||
middle_out:
|
||||
region_latent_size: 4
|
||||
num_peers: 3
|
||||
residual: true
|
||||
|
||||
predictor:
|
||||
layer_shapes: [3]
|
||||
activations: ['ReLU']
|
||||
|
||||
training:
|
||||
epochs: 1024
|
||||
batch_size: 32
|
||||
num_batches: 1
|
||||
learning_rate: 0.01
|
||||
---
|
||||
name: debug
|
||||
import: $
|
||||
|
||||
scheduler:
|
||||
reps_per_version: 1
|
||||
agents_per_job: 1
|
||||
|
||||
latent_projector:
|
||||
type: fc
|
||||
input_size: 1953
|
||||
latent_size: 4
|
||||
layer_shapes: [32, 8]
|
||||
activations: ['ReLU', 'ReLU']
|
||||
|
||||
middle_out:
|
||||
region_latent_size: 4
|
||||
num_peers: 3
|
||||
residual: true
|
||||
|
||||
predictor:
|
||||
layer_shapes: [3]
|
||||
activations: ['ReLU']
|
||||
|
||||
training:
|
||||
epochs: 1024
|
||||
batch_size: 32
|
||||
num_batches: 1
|
||||
learning_rate: 0.01
|
||||
---
|
||||
name: FOURIER_smol_master
|
||||
import: $
|
||||
|
||||
scheduler:
|
||||
reps_per_version: 8
|
||||
agents_per_job: 8
|
||||
|
||||
latent_projector:
|
||||
type: fourier
|
||||
input_size: 195
|
||||
latent_size: 4
|
||||
layer_shapes: [20, 6]
|
||||
activations: ['ReLU', 'ReLU']
|
||||
pass_raw_len: 20 # 0.001s
|
||||
|
||||
middle_out:
|
||||
region_latent_size: 4
|
||||
num_peers: 2
|
||||
residual: true
|
||||
|
||||
predictor:
|
||||
layer_shapes: [2]
|
||||
activations: ['ReLU']
|
||||
|
||||
training:
|
||||
epochs: 10000
|
||||
batch_size: 32
|
||||
num_batches: 1
|
||||
learning_rate: 0.01
|
||||
device: cpu
|
Loading…
Reference in New Issue
Block a user