more tuning

This commit is contained in:
Dominik Moritz Roth 2024-05-26 23:56:28 +02:00
parent 5eab625cae
commit 37cd21957a

View File

@ -105,6 +105,7 @@ training:
save_path: models
peer_gradients_factor: 0.25
value_scale: 1000
device: cpu
middle_out:
residual: false
@ -300,7 +301,7 @@ training:
grid:
training.value_scale: [1, 100, 1000, 10000]
---
name: FC_BSAbl2
name: FC_BSAbl3 # 64 is best, everything >=64 is ok
import: $
latent_projector:
@ -327,4 +328,201 @@ training:
device: cpu
grid:
training.batch_size: [64, 128, 256]
training.batch_size: [64, 128, 256]
---
name: FC_smol_master
import: $
scheduler:
reps_per_version: 8
agents_per_job: 8
latent_projector:
type: fc
input_size: 195
latent_size: 4
layer_shapes: [20, 6]
activations: ['ReLU', 'ReLU']
middle_out:
region_latent_size: 4
num_peers: 2
residual: true
predictor:
layer_shapes: [2]
activations: ['ReLU']
training:
epochs: 10000
batch_size: 32
num_batches: 1
learning_rate: 0.01
device: cpu
---
name: FC_smolTanh
import: $
latent_projector:
type: fc
input_size: 195
latent_size: 4
layer_shapes: [20, 6]
activations: ['Tanh', 'Tanh']
middle_out:
region_latent_size: 4
num_peers: 2
residual: true
predictor:
layer_shapes: [2]
activations: ['Tanh']
training:
epochs: 1024
batch_size: 32
num_batches: 1
learning_rate: 0.01
device: cpu
---
name: FOURIER_thin
import: $
latent_projector:
type: fourier
input_size: 1953 # 0.1s
latent_size: 4
layer_shapes: [32, 8]
activations: ['ReLU', 'ReLU']
pass_raw_len: 195 # 0.01s
middle_out:
region_latent_size: 4
num_peers: 3
residual: true
predictor:
layer_shapes: [3]
activations: ['ReLU']
training:
epochs: 1024
batch_size: 32
num_batches: 1
learning_rate: 0.01
---
name: FOURIER_thicc
import: $
latent_projector:
type: fourier
input_size: 1953 # 0.1s
latent_size: 8
layer_shapes: [32, 8]
activations: ['ReLU', 'ReLU']
pass_raw_len: 195 # 0.01s
middle_out:
region_latent_size: 8
num_peers: 3
residual: true
predictor:
layer_shapes: [4]
activations: ['ReLU']
training:
epochs: 1024
batch_size: 32
num_batches: 1
learning_rate: 0.01
---
name: FC_master2
import: $
scheduler:
reps_per_version: 8
agents_per_job: 8
latent_projector:
type: fc
input_size: 1953
latent_size: 4
layer_shapes: [32, 8]
activations: ['ReLU', 'ReLU']
middle_out:
region_latent_size: 4
num_peers: 3
residual: true
predictor:
layer_shapes: [3]
activations: ['ReLU']
training:
epochs: 1024
batch_size: 32
num_batches: 1
learning_rate: 0.01
---
name: debug
import: $
scheduler:
reps_per_version: 1
agents_per_job: 1
latent_projector:
type: fc
input_size: 1953
latent_size: 4
layer_shapes: [32, 8]
activations: ['ReLU', 'ReLU']
middle_out:
region_latent_size: 4
num_peers: 3
residual: true
predictor:
layer_shapes: [3]
activations: ['ReLU']
training:
epochs: 1024
batch_size: 32
num_batches: 1
learning_rate: 0.01
---
name: FOURIER_smol_master
import: $
scheduler:
reps_per_version: 8
agents_per_job: 8
latent_projector:
type: fourier
input_size: 195
latent_size: 4
layer_shapes: [20, 6]
activations: ['ReLU', 'ReLU']
pass_raw_len: 20 # 0.001s
middle_out:
region_latent_size: 4
num_peers: 2
residual: true
predictor:
layer_shapes: [2]
activations: ['ReLU']
training:
epochs: 10000
batch_size: 32
num_batches: 1
learning_rate: 0.01
device: cpu