More tuning lel

This commit is contained in:
Dominik Moritz Roth 2024-05-27 10:29:15 +02:00
parent 74d4da5eba
commit 9308b6f1f7

View File

@ -26,7 +26,7 @@ training:
learning_rate: 0.01 # Learning rate for the optimizer.
peer_gradients_factor: 0.33 # Factor for gradients acting on predictor throught peers. 0.0 = detach gradients.
value_scale: 1 # Normalize data by dividing values by this (and multiple outputs)
eval_freq: -1 # Frequency of evaluation during training (in epochs).
eval_freq: 8 # Frequency of evaluation during training (in epochs).
save_path: models # Directory to save the best model and encoder.
evaluation:
@ -89,7 +89,7 @@ evaluation:
full_compression: false
bitstream_encoding:
type: identity
type: binomHuffman
data:
url: https://content.neuralink.com/compression-challenge/data.zip
@ -101,7 +101,7 @@ profiler:
enable: false
training:
eval_freq: -1 # 8
eval_freq: 8
save_path: models
peer_gradients_factor: 0.25
value_scale: 1000
@ -330,7 +330,7 @@ training:
grid:
training.batch_size: [64, 128, 256]
---
name: FC_smol_master
name: FC_smol_master2
import: $
scheduler:
@ -438,7 +438,7 @@ training:
num_batches: 1
learning_rate: 0.01
---
name: FC_master2
name: FC_master3
import: $
scheduler:
@ -461,6 +461,35 @@ predictor:
layer_shapes: [3]
activations: ['ReLU']
training:
epochs: 1024
batch_size: 32
num_batches: 1
learning_rate: 0.01
---
name: FC_master_single
import: $
scheduler:
reps_per_version: 1
agents_per_job: 1
latent_projector:
type: fc
input_size: 1953
latent_size: 4
layer_shapes: [32, 8]
activations: ['ReLU', 'ReLU']
middle_out:
region_latent_size: 4
num_peers: 3
residual: true
predictor:
layer_shapes: [3]
activations: ['ReLU']
training:
epochs: 1024
batch_size: 32