somewhat working
This commit is contained in:
parent
2ce2e8c384
commit
fb51634417
117
config.yaml
117
config.yaml
@ -1,5 +1,5 @@
|
||||
name: DEFAULT
|
||||
project: Spikey
|
||||
project: Spikey_1
|
||||
|
||||
slurm:
|
||||
name: 'Spikey_{config[name]}'
|
||||
@ -22,7 +22,7 @@ runner: spikey
|
||||
|
||||
scheduler:
|
||||
reps_per_version: 1
|
||||
agents_per_job: 1
|
||||
agents_per_job: 100
|
||||
reps_per_agent: 1
|
||||
|
||||
wandb:
|
||||
@ -37,35 +37,6 @@ wandb:
|
||||
monitor_gym: False
|
||||
save_code: False
|
||||
|
||||
---
|
||||
name: Test
|
||||
import: $
|
||||
|
||||
latent_projector:
|
||||
type: rnn # Options: 'fc', 'rnn'
|
||||
input_size: 195 # =0.01s 19531 # =1s Input size for the Latent Projector (length of snippets).
|
||||
latent_size: 4 # Size of the latent representation before message passing.
|
||||
#layer_shapes: [256, 32] # List of layer sizes for the latent projector (if type is 'fc').
|
||||
#activations: ['ReLU', 'ReLU'] # Activation functions for the latent projector layers (if type is 'fc').
|
||||
rnn_hidden_size: 4 # Hidden size for the RNN projector (if type is 'rnn').
|
||||
rnn_num_layers: 1 # Number of layers for the RNN projector (if type is 'rnn').
|
||||
|
||||
middle_out:
|
||||
output_size: 4 # Size of the latent representation after message passing.
|
||||
num_peers: 3 # Number of most correlated peers to consider.
|
||||
|
||||
predictor:
|
||||
layer_shapes: [4] # List of layer sizes for the predictor.
|
||||
activations: ['ELU'] # Activation functions for the predictor layers.
|
||||
|
||||
training:
|
||||
epochs: 1024 # Number of training epochs.
|
||||
batch_size: 16 # 64 # Batch size for training.
|
||||
num_batches: 4 # Batches per epoch
|
||||
learning_rate: 0.05 # Learning rate for the optimizer.
|
||||
eval_freq: -1 # 8 # Frequency of evaluation during training (in epochs).
|
||||
save_path: models # Directory to save the best model and encoder.
|
||||
|
||||
evaluation:
|
||||
full_compression: false # Perform full compression during evaluation
|
||||
|
||||
@ -79,4 +50,86 @@ data:
|
||||
cut_length: null # Optional length to cut sequences to.
|
||||
|
||||
profiler:
|
||||
enable: false
|
||||
enable: false
|
||||
|
||||
training:
|
||||
eval_freq: -1 # 8 # Frequency of evaluation during training (in epochs).
|
||||
save_path: models # Directory to save the best model and encoder.
|
||||
---
|
||||
name: FC
|
||||
import: $
|
||||
|
||||
latent_projector:
|
||||
type: fc # Options: 'fc', 'rnn'
|
||||
input_size: 1953 # =0.1s 19531 # =1s Input size for the Latent Projector (length of snippets).
|
||||
latent_size: 4 # Size of the latent representation before message passing.
|
||||
layer_shapes: [32, 8] # List of layer sizes for the latent projector (if type is 'fc').
|
||||
activations: ['ReLU', 'ReLU'] # Activation functions for the latent projector layers (if type is 'fc').
|
||||
#rnn_hidden_size: 4 # Hidden size for the RNN projector (if type is 'rnn').
|
||||
#rnn_num_layers: 1 # Number of layers for the RNN projector (if type is 'rnn').
|
||||
|
||||
middle_out:
|
||||
output_size: 4 # Size of the latent representation after message passing.
|
||||
num_peers: 3 # Number of most correlated peers to consider.
|
||||
|
||||
predictor:
|
||||
layer_shapes: [3] # List of layer sizes for the predictor.
|
||||
activations: ['ReLU'] # Activation functions for the predictor layers.
|
||||
|
||||
training:
|
||||
epochs: 1024 # Number of training epochs.
|
||||
batch_size: 32 # Batch size for training.
|
||||
num_batches: 1 # Batches per epoch
|
||||
learning_rate: 0.01 # Learning rate for the optimizer.
|
||||
---
|
||||
name: FC6
|
||||
import: $
|
||||
|
||||
latent_projector:
|
||||
type: fc # Options: 'fc', 'rnn'
|
||||
input_size: 195 # =0.1s 19531 # =1s Input size for the Latent Projector (length of snippets).
|
||||
latent_size: 4 # Size of the latent representation before message passing.
|
||||
layer_shapes: [16] # List of layer sizes for the latent projector (if type is 'fc').
|
||||
activations: ['ReLU'] # Activation functions for the latent projector layers (if type is 'fc').
|
||||
#rnn_hidden_size: 4 # Hidden size for the RNN projector (if type is 'rnn').
|
||||
#rnn_num_layers: 1 # Number of layers for the RNN projector (if type is 'rnn').
|
||||
|
||||
middle_out:
|
||||
output_size: 8 # Size of the latent representation after message passing.
|
||||
num_peers: 3 # Number of most correlated peers to consider.
|
||||
|
||||
predictor:
|
||||
layer_shapes: [3] # List of layer sizes for the predictor.
|
||||
activations: ['ReLU'] # Activation functions for the predictor layers.
|
||||
|
||||
training:
|
||||
epochs: 1024 # Number of training epochs.
|
||||
batch_size: 16 # Batch size for training.
|
||||
num_batches: 1 # Batches per epoch
|
||||
learning_rate: 0.01 # Learning rate for the optimizer.
|
||||
---
|
||||
name: RNN
|
||||
import: $
|
||||
|
||||
latent_projector:
|
||||
type: rnn # Options: 'fc', 'rnn'
|
||||
input_size: 1953 # =0.1s 19531 # =1s Input size for the Latent Projector (length of snippets).
|
||||
latent_size: 4 # Size of the latent representation before message passing.
|
||||
#layer_shapes: [32, 8] # List of layer sizes for the latent projector (if type is 'fc').
|
||||
#activations: ['ReLU', 'ReLU'] # Activation functions for the latent projector layers (if type is 'fc').
|
||||
rnn_hidden_size: 3 # Hidden size for the RNN projector (if type is 'rnn').
|
||||
rnn_num_layers: 2 # Number of layers for the RNN projector (if type is 'rnn').
|
||||
|
||||
middle_out:
|
||||
output_size: 4 # Size of the latent representation after message passing.
|
||||
num_peers: 3 # Number of most correlated peers to consider.
|
||||
|
||||
predictor:
|
||||
layer_shapes: [3] # List of layer sizes for the predictor.
|
||||
activations: ['ReLU'] # Activation functions for the predictor layers.
|
||||
|
||||
training:
|
||||
epochs: 1024 # Number of training epochs.
|
||||
batch_size: 64 # Batch size for training.
|
||||
num_batches: 2 # Batches per epoch
|
||||
learning_rate: 0.01 # Learning rate for the optimizer.
|
Loading…
Reference in New Issue
Block a user