somewhat working
This commit is contained in:
parent
2ce2e8c384
commit
fb51634417
117
config.yaml
117
config.yaml
@ -1,5 +1,5 @@
|
|||||||
name: DEFAULT
|
name: DEFAULT
|
||||||
project: Spikey
|
project: Spikey_1
|
||||||
|
|
||||||
slurm:
|
slurm:
|
||||||
name: 'Spikey_{config[name]}'
|
name: 'Spikey_{config[name]}'
|
||||||
@ -22,7 +22,7 @@ runner: spikey
|
|||||||
|
|
||||||
scheduler:
|
scheduler:
|
||||||
reps_per_version: 1
|
reps_per_version: 1
|
||||||
agents_per_job: 1
|
agents_per_job: 100
|
||||||
reps_per_agent: 1
|
reps_per_agent: 1
|
||||||
|
|
||||||
wandb:
|
wandb:
|
||||||
@ -37,35 +37,6 @@ wandb:
|
|||||||
monitor_gym: False
|
monitor_gym: False
|
||||||
save_code: False
|
save_code: False
|
||||||
|
|
||||||
---
|
|
||||||
name: Test
|
|
||||||
import: $
|
|
||||||
|
|
||||||
latent_projector:
|
|
||||||
type: rnn # Options: 'fc', 'rnn'
|
|
||||||
input_size: 195 # =0.01s 19531 # =1s Input size for the Latent Projector (length of snippets).
|
|
||||||
latent_size: 4 # Size of the latent representation before message passing.
|
|
||||||
#layer_shapes: [256, 32] # List of layer sizes for the latent projector (if type is 'fc').
|
|
||||||
#activations: ['ReLU', 'ReLU'] # Activation functions for the latent projector layers (if type is 'fc').
|
|
||||||
rnn_hidden_size: 4 # Hidden size for the RNN projector (if type is 'rnn').
|
|
||||||
rnn_num_layers: 1 # Number of layers for the RNN projector (if type is 'rnn').
|
|
||||||
|
|
||||||
middle_out:
|
|
||||||
output_size: 4 # Size of the latent representation after message passing.
|
|
||||||
num_peers: 3 # Number of most correlated peers to consider.
|
|
||||||
|
|
||||||
predictor:
|
|
||||||
layer_shapes: [4] # List of layer sizes for the predictor.
|
|
||||||
activations: ['ELU'] # Activation functions for the predictor layers.
|
|
||||||
|
|
||||||
training:
|
|
||||||
epochs: 1024 # Number of training epochs.
|
|
||||||
batch_size: 16 # 64 # Batch size for training.
|
|
||||||
num_batches: 4 # Batches per epoch
|
|
||||||
learning_rate: 0.05 # Learning rate for the optimizer.
|
|
||||||
eval_freq: -1 # 8 # Frequency of evaluation during training (in epochs).
|
|
||||||
save_path: models # Directory to save the best model and encoder.
|
|
||||||
|
|
||||||
evaluation:
|
evaluation:
|
||||||
full_compression: false # Perform full compression during evaluation
|
full_compression: false # Perform full compression during evaluation
|
||||||
|
|
||||||
@ -79,4 +50,86 @@ data:
|
|||||||
cut_length: null # Optional length to cut sequences to.
|
cut_length: null # Optional length to cut sequences to.
|
||||||
|
|
||||||
profiler:
|
profiler:
|
||||||
enable: false
|
enable: false
|
||||||
|
|
||||||
|
training:
|
||||||
|
eval_freq: -1 # 8 # Frequency of evaluation during training (in epochs).
|
||||||
|
save_path: models # Directory to save the best model and encoder.
|
||||||
|
---
|
||||||
|
name: FC
|
||||||
|
import: $
|
||||||
|
|
||||||
|
latent_projector:
|
||||||
|
type: fc # Options: 'fc', 'rnn'
|
||||||
|
input_size: 1953 # =0.1s 19531 # =1s Input size for the Latent Projector (length of snippets).
|
||||||
|
latent_size: 4 # Size of the latent representation before message passing.
|
||||||
|
layer_shapes: [32, 8] # List of layer sizes for the latent projector (if type is 'fc').
|
||||||
|
activations: ['ReLU', 'ReLU'] # Activation functions for the latent projector layers (if type is 'fc').
|
||||||
|
#rnn_hidden_size: 4 # Hidden size for the RNN projector (if type is 'rnn').
|
||||||
|
#rnn_num_layers: 1 # Number of layers for the RNN projector (if type is 'rnn').
|
||||||
|
|
||||||
|
middle_out:
|
||||||
|
output_size: 4 # Size of the latent representation after message passing.
|
||||||
|
num_peers: 3 # Number of most correlated peers to consider.
|
||||||
|
|
||||||
|
predictor:
|
||||||
|
layer_shapes: [3] # List of layer sizes for the predictor.
|
||||||
|
activations: ['ReLU'] # Activation functions for the predictor layers.
|
||||||
|
|
||||||
|
training:
|
||||||
|
epochs: 1024 # Number of training epochs.
|
||||||
|
batch_size: 32 # Batch size for training.
|
||||||
|
num_batches: 1 # Batches per epoch
|
||||||
|
learning_rate: 0.01 # Learning rate for the optimizer.
|
||||||
|
---
|
||||||
|
name: FC6
|
||||||
|
import: $
|
||||||
|
|
||||||
|
latent_projector:
|
||||||
|
type: fc # Options: 'fc', 'rnn'
|
||||||
|
input_size: 195 # =0.1s 19531 # =1s Input size for the Latent Projector (length of snippets).
|
||||||
|
latent_size: 4 # Size of the latent representation before message passing.
|
||||||
|
layer_shapes: [16] # List of layer sizes for the latent projector (if type is 'fc').
|
||||||
|
activations: ['ReLU'] # Activation functions for the latent projector layers (if type is 'fc').
|
||||||
|
#rnn_hidden_size: 4 # Hidden size for the RNN projector (if type is 'rnn').
|
||||||
|
#rnn_num_layers: 1 # Number of layers for the RNN projector (if type is 'rnn').
|
||||||
|
|
||||||
|
middle_out:
|
||||||
|
output_size: 8 # Size of the latent representation after message passing.
|
||||||
|
num_peers: 3 # Number of most correlated peers to consider.
|
||||||
|
|
||||||
|
predictor:
|
||||||
|
layer_shapes: [3] # List of layer sizes for the predictor.
|
||||||
|
activations: ['ReLU'] # Activation functions for the predictor layers.
|
||||||
|
|
||||||
|
training:
|
||||||
|
epochs: 1024 # Number of training epochs.
|
||||||
|
batch_size: 16 # Batch size for training.
|
||||||
|
num_batches: 1 # Batches per epoch
|
||||||
|
learning_rate: 0.01 # Learning rate for the optimizer.
|
||||||
|
---
|
||||||
|
name: RNN
|
||||||
|
import: $
|
||||||
|
|
||||||
|
latent_projector:
|
||||||
|
type: rnn # Options: 'fc', 'rnn'
|
||||||
|
input_size: 1953 # =0.1s 19531 # =1s Input size for the Latent Projector (length of snippets).
|
||||||
|
latent_size: 4 # Size of the latent representation before message passing.
|
||||||
|
#layer_shapes: [32, 8] # List of layer sizes for the latent projector (if type is 'fc').
|
||||||
|
#activations: ['ReLU', 'ReLU'] # Activation functions for the latent projector layers (if type is 'fc').
|
||||||
|
rnn_hidden_size: 3 # Hidden size for the RNN projector (if type is 'rnn').
|
||||||
|
rnn_num_layers: 2 # Number of layers for the RNN projector (if type is 'rnn').
|
||||||
|
|
||||||
|
middle_out:
|
||||||
|
output_size: 4 # Size of the latent representation after message passing.
|
||||||
|
num_peers: 3 # Number of most correlated peers to consider.
|
||||||
|
|
||||||
|
predictor:
|
||||||
|
layer_shapes: [3] # List of layer sizes for the predictor.
|
||||||
|
activations: ['ReLU'] # Activation functions for the predictor layers.
|
||||||
|
|
||||||
|
training:
|
||||||
|
epochs: 1024 # Number of training epochs.
|
||||||
|
batch_size: 64 # Batch size for training.
|
||||||
|
num_batches: 2 # Batches per epoch
|
||||||
|
learning_rate: 0.01 # Learning rate for the optimizer.
|
Loading…
Reference in New Issue
Block a user