Update experiment plan with validation results and WandB URLs

- Complete validation status table with results for all environments
- Add WandB tracking URLs for completed fine-tuning runs
- Document technical fixes and current job queue status
- Add test scripts for remaining D3IL avoid_m3 and robomimic transport validation
This commit is contained in:
ys1087@partner.kit.edu 2025-08-27 22:14:10 +02:00
parent bda37869e1
commit cb9846484f
3 changed files with 93 additions and 58 deletions

View File

@ -1,62 +1,30 @@
# DPPO Experiment Plan
# DPPO Validation Status
## Phase 1: Environment Validation ✅ NEARLY COMPLETE!
## Environment Testing Progress
### ✅ FULLY VALIDATED ENVIRONMENTS
| Environment | Pre-train | Fine-tune | Result | WandB URL |
|-------------|-----------|-----------|--------|-----------|
| **Gym (MuJoCo)** |
| hopper-medium-v2 | Complete | Complete | 1415.85 | [Run](https://wandb.ai/dominik_roth/dppo-gym-hopper-medium-v2-finetune/runs/hpvpzp50) |
| walker2d-medium-v2 | Complete | Complete | 2977.97 | [Run](https://wandb.ai/dominik_roth/dppo-gym-walker2d-medium-v2-finetune/runs/70b8ioli) |
| halfcheetah-medium-v2 | Complete | Complete | 4058.34 | [Run](https://wandb.ai/dominik_roth/dppo-gym-halfcheetah-medium-v2-finetune/runs/ya612mef) |
| **Robomimic** |
| lift | Complete | Complete | 69% success | [Run](https://wandb.ai/dominik_roth/robomimic-lift-finetune/runs/aih90dlk) |
| can | Complete | Complete | 85.89% success | [Run](https://wandb.ai/dominik_roth/robomimic-can-finetune/runs/f9nl5u17) |
| square | Complete | Running (job 3446120) | Pending | - |
| transport | Complete | Running (job 3446147) | Pending | - |
| **D3IL** |
| avoid_m1 | Complete | Complete | 87.7 reward | [Run](https://wandb.ai/dominik_roth/d3il-avoiding-m5-m1-finetune/runs/ugkrcngm) |
| avoid_m2 | Complete | Complete | 82.46 reward | [Run](https://wandb.ai/dominik_roth/d3il-avoiding-m5-m2-finetune/runs/farekalr) |
| avoid_m3 | Ready | Queued (job 3446146) | Pending | - |
**🔥 Gym (MuJoCo) - ALL WORKING:**
- **Hopper**: Pre-train ✅ | Fine-tune ✅ (reward 1415.85)
- **Walker2d**: Pre-train ✅ | Fine-tune ✅ (reward 2977.97)
- **Halfcheetah**: Pre-train ✅ | Fine-tune ✅ (reward 4058.34)
## Technical Issues Resolved
- MuJoCo compilation with Intel compiler (GCC wrapper solution)
- SLURM job scheduling and resource allocation
- WandB logging configuration
- Configuration parameter corrections for D3IL
**🔥 Robomimic - VALIDATED:**
- **Pre-training**: All 4 environments ✅ (lift, can, square, transport)
- **Fine-tuning**: Lift working excellently (69% success rate)
**🔥 D3IL - EXCELLENT:**
- **Installation**: Complete ✅ (d3il_sim, gym_avoiding)
- **Fine-tuning**: avoid_m1 OUTSTANDING (reward 85.04+, still improving)
- **Pre-training**: avoid_m1 job queued
### 🛠️ CRITICAL FIXES IMPLEMENTED
- ✅ **MuJoCo Intel compiler issue SOLVED** - The major technical blocker
- ✅ **GCC wrapper filtering Intel flags** - Works perfectly
- ✅ **WandB logging active** - All results tracked with "dppo-" prefix
- ✅ **SLURM automation** - Complete testing pipeline
- ✅ **Configuration fixes** - All environment types working
## Phase 2: Complete Paper Replication
### Remaining Validation Tasks
- **Robomimic fine-tuning**: can, square, transport (after lift completes)
- **D3IL environments**: avoid_m2, avoid_m3 (after m1 validation complete)
### Full Paper Results (Schedule after validation complete)
**Gym Tasks (Core Results):**
- hopper-medium-v2: Full pre-train (200 epochs) + fine-tune
- walker2d-medium-v2: Full pre-train (200 epochs) + fine-tune
- halfcheetah-medium-v2: Full pre-train (200 epochs) + fine-tune
**Extended Results:**
- All Robomimic tasks: Full pre-train + fine-tune runs
- All D3IL tasks: Full pre-train + fine-tune runs
## Success Metrics
**WandB Projects Active:**
- dppo-gym-*-finetune: Gym fine-tuning results
- robomimic-*-finetune: Robomimic fine-tuning results
- dppo-d3il-*-finetune: D3IL fine-tuning results
**Performance Benchmarks:**
- Gym rewards: 1415-4058 range validated
- Robomimic success rate: 69%+ validated
- D3IL rewards: 85+ validated
## Current Status: 🚀 PRODUCTION READY
**Blockers:** NONE - All critical issues resolved!
**Status:** DPPO fully operational on HoReKa
**Achievement:** Major technical breakthrough - MuJoCo compilation solved!
Ready for full-scale paper replication experiments.
## Next Steps
1. Complete remaining validation runs
2. Begin full paper replication experiments
3. Generate performance comparison tables

View File

@ -0,0 +1,29 @@
#!/bin/bash
#SBATCH --job-name=dppo_d3il_avoid_m3_ft
#SBATCH --account=hk-project-p0022232
#SBATCH --partition=dev_accelerated
#SBATCH --gres=gpu:1
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=8
#SBATCH --time=00:30:00
#SBATCH --mem=16G
#SBATCH --output=logs/dppo_d3il_avoid_m3_ft_%j.out
#SBATCH --error=logs/dppo_d3il_avoid_m3_ft_%j.err
module load devel/cuda/12.4
# Environment variables
export WANDB_MODE=online
export DPPO_WANDB_ENTITY=${DPPO_WANDB_ENTITY:-"dominik_roth"}
export DPPO_DATA_DIR=${DPPO_DATA_DIR:-$SLURM_SUBMIT_DIR/data}
export DPPO_LOG_DIR=${DPPO_LOG_DIR:-$SLURM_SUBMIT_DIR/log}
cd $SLURM_SUBMIT_DIR
source .venv/bin/activate
echo "Testing D3IL avoid_m3 fine-tuning..."
python script/run.py --config-name=ft_ppo_diffusion_mlp \
--config-dir=cfg/d3il/finetune/avoid_m3 \
train.n_train_itr=50 \
train.save_model_freq=25

View File

@ -0,0 +1,38 @@
#!/bin/bash
#SBATCH --job-name=dppo_transport_ft
#SBATCH --account=hk-project-p0022232
#SBATCH --partition=dev_accelerated
#SBATCH --gres=gpu:1
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=8
#SBATCH --time=00:30:00
#SBATCH --mem=24G
#SBATCH --output=logs/dppo_transport_ft_%j.out
#SBATCH --error=logs/dppo_transport_ft_%j.err
module load devel/cuda/12.4
# MuJoCo environment for fine-tuning
export MUJOCO_PY_MUJOCO_PATH=$HOME/.mujoco/mujoco210
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/.mujoco/mujoco210/bin:/usr/lib/nvidia
export MUJOCO_GL=egl
# Environment variables
export WANDB_MODE=online
export DPPO_WANDB_ENTITY=${DPPO_WANDB_ENTITY:-"dominik_roth"}
export DPPO_DATA_DIR=${DPPO_DATA_DIR:-$SLURM_SUBMIT_DIR/data}
export DPPO_LOG_DIR=${DPPO_LOG_DIR:-$SLURM_SUBMIT_DIR/log}
cd $SLURM_SUBMIT_DIR
source .venv/bin/activate
# Apply HoReKa MuJoCo compilation fix
echo "Applying HoReKa MuJoCo compilation fix..."
python -c "exec(open('fix_mujoco_compilation.py').read()); apply_mujoco_fix(); import mujoco_py; print('MuJoCo ready!')"
echo "Testing robomimic transport fine-tuning..."
python script/run.py --config-name=ft_ppo_diffusion_mlp \
--config-dir=cfg/robomimic/finetune/transport \
train.n_train_itr=50 \
train.save_model_freq=25