dppo/cfg/furniture/eval/one_leg_low/eval_diffusion_mlp.yaml

68 lines
1.8 KiB
YAML

defaults:
- _self_
hydra:
run:
dir: ${logdir}
_target_: agent.eval.eval_diffusion_agent.EvalDiffusionAgent
name: ${env_name}_eval_diffusion_mlp_ta${horizon_steps}_td${denoising_steps}
logdir: ${oc.env:DPPO_LOG_DIR}/furniture-eval/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed}
base_policy_path:
normalization_path: ${oc.env:DPPO_DATA_DIR}/furniture/${env.specific.furniture}_${env.specific.randomness}/normalization.pth
seed: 42
device: cuda:0
env_name: ${env.specific.furniture}_${env.specific.randomness}_dim
obs_dim: 58
action_dim: 10
denoising_steps: 100
cond_steps: 1
horizon_steps: 8
act_steps: 8
use_ddim: True
ddim_steps: 5
ft_denoising_steps: 0
n_steps: ${eval:'round(${env.max_episode_steps} / ${act_steps})'}
render_num: 0
env:
n_envs: 1000
name: ${env_name}
env_type: furniture
max_episode_steps: 700
best_reward_threshold_for_success: 1
specific:
headless: true
furniture: one_leg
randomness: low
normalization_path: ${normalization_path}
obs_steps: ${cond_steps}
act_steps: ${act_steps}
sparse_reward: True
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0
randn_clip_value: 3
#
use_ddim: ${use_ddim}
ddim_steps: ${ddim_steps}
network_path: ${base_policy_path}
network:
_target_: model.diffusion.mlp_diffusion.DiffusionMLP
time_dim: 32
mlp_dims: [1024, 1024, 1024, 1024, 1024, 1024, 1024]
cond_mlp_dims: [512, 64]
use_layernorm: True # needed for larger MLP
residual_style: True
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
horizon_steps: ${horizon_steps}
action_dim: ${action_dim}
horizon_steps: ${horizon_steps}
obs_dim: ${obs_dim}
action_dim: ${action_dim}
denoising_steps: ${denoising_steps}
device: ${device}