change default ft_denoising_steps in eval configs to 0 (assume evaluating pre-trained models)

This commit is contained in:
allenzren 2025-02-04 11:48:59 -05:00 committed by Allen Z. Ren
parent fc42865c77
commit 9032d02eae
28 changed files with 55 additions and 55 deletions

View File

@ -19,7 +19,7 @@ denoising_steps: 20
cond_steps: 1
horizon_steps: 4
act_steps: 4
ft_denoising_steps: 10
ft_denoising_steps: 0
n_steps: 25
render_num: 40
@ -48,7 +48,7 @@ env:
reset_within_step: False
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -21,7 +21,7 @@ horizon_steps: 8
act_steps: 8
use_ddim: True
ddim_steps: 5
ft_denoising_steps: 5
ft_denoising_steps: 0
n_steps: ${eval:'round(${env.max_episode_steps} / ${act_steps})'}
render_num: 0
@ -42,7 +42,7 @@ env:
sparse_reward: True
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -21,7 +21,7 @@ horizon_steps: 16
act_steps: 8
use_ddim: True
ddim_steps: 5
ft_denoising_steps: 5
ft_denoising_steps: 0
n_steps: ${eval:'round(${env.max_episode_steps} / ${act_steps})'}
render_num: 0
@ -42,7 +42,7 @@ env:
sparse_reward: True
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -21,7 +21,7 @@ horizon_steps: 8
act_steps: 8
use_ddim: True
ddim_steps: 5
ft_denoising_steps: 5
ft_denoising_steps: 0
n_steps: ${eval:'round(${env.max_episode_steps} / ${act_steps})'}
render_num: 0
@ -42,7 +42,7 @@ env:
sparse_reward: True
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -21,7 +21,7 @@ horizon_steps: 16
act_steps: 8
use_ddim: True
ddim_steps: 5
ft_denoising_steps: 5
ft_denoising_steps: 0
n_steps: ${eval:'round(${env.max_episode_steps} / ${act_steps})'}
render_num: 0
@ -42,7 +42,7 @@ env:
sparse_reward: True
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -21,7 +21,7 @@ horizon_steps: 8
act_steps: 8
use_ddim: True
ddim_steps: 5
ft_denoising_steps: 5
ft_denoising_steps: 0
n_steps: ${eval:'round(${env.max_episode_steps} / ${act_steps})'}
render_num: 0
@ -42,7 +42,7 @@ env:
sparse_reward: True
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -21,7 +21,7 @@ horizon_steps: 16
act_steps: 8
use_ddim: True
ddim_steps: 5
ft_denoising_steps: 5
ft_denoising_steps: 0
n_steps: ${eval:'round(${env.max_episode_steps} / ${act_steps})'}
render_num: 0
@ -42,7 +42,7 @@ env:
sparse_reward: True
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -19,7 +19,7 @@ denoising_steps: 20
cond_steps: 1
horizon_steps: 4
act_steps: 4
ft_denoising_steps: 10
ft_denoising_steps: 0
n_steps: 250 # each episode can take maximum (max_episode_steps / act_steps, =250 right now) steps but may finish earlier in gym. We only count episodes finished within n_steps for evaluation.
render_num: 0
@ -41,7 +41,7 @@ env:
reset_within_step: True
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -19,7 +19,7 @@ denoising_steps: 20
cond_steps: 1
horizon_steps: 4
act_steps: 4
ft_denoising_steps: 10
ft_denoising_steps: 0
n_steps: 250 # each episode can take maximum (max_episode_steps / act_steps, =250 right now) steps but may finish earlier in gym. We only count episodes finished within n_steps for evaluation.
render_num: 0
@ -41,7 +41,7 @@ env:
reset_within_step: True
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -19,7 +19,7 @@ denoising_steps: 20
cond_steps: 1
horizon_steps: 4
act_steps: 4
ft_denoising_steps: 10
ft_denoising_steps: 0
n_steps: 70
render_num: 0
@ -41,7 +41,7 @@ env:
reset_within_step: True
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -19,7 +19,7 @@ denoising_steps: 20
cond_steps: 1
horizon_steps: 4
act_steps: 4
ft_denoising_steps: 10
ft_denoising_steps: 0
n_steps: 250 # each episode can take maximum (max_episode_steps / act_steps, =250 right now) steps but may finish earlier in gym. We only count episodes finished within n_steps for evaluation.
render_num: 0
@ -41,7 +41,7 @@ env:
reset_within_step: True
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -20,7 +20,7 @@ denoising_steps: 20
cond_steps: 1
horizon_steps: 4
act_steps: 4
ft_denoising_steps: 10
ft_denoising_steps: 0
n_steps: 300 # each episode takes max_episode_steps / act_steps steps
render_num: 0
@ -45,7 +45,7 @@ env:
reset_within_step: True
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -23,7 +23,7 @@ horizon_steps: 4
act_steps: 4
use_ddim: True
ddim_steps: 5
ft_denoising_steps: 5
ft_denoising_steps: 0
n_steps: 300 # each episode takes max_episode_steps / act_steps steps
render_num: 0
@ -59,7 +59,7 @@ shape_meta:
shape: [7]
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -20,7 +20,7 @@ denoising_steps: 20
cond_steps: 1
horizon_steps: 4
act_steps: 4
ft_denoising_steps: 10
ft_denoising_steps: 0
n_steps: 75 # each episode takes max_episode_steps / act_steps steps
render_num: 0
@ -45,7 +45,7 @@ env:
reset_within_step: True
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -23,7 +23,7 @@ horizon_steps: 4
act_steps: 4
use_ddim: True
ddim_steps: 5
ft_denoising_steps: 5
ft_denoising_steps: 0
n_steps: 300 # each episode takes max_episode_steps / act_steps steps
render_num: 0
@ -59,7 +59,7 @@ shape_meta:
shape: [7]
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -20,7 +20,7 @@ denoising_steps: 20
cond_steps: 1
horizon_steps: 4
act_steps: 4
ft_denoising_steps: 10
ft_denoising_steps: 0
n_steps: 300 # each episode takes max_episode_steps / act_steps steps
render_num: 0
@ -45,7 +45,7 @@ env:
reset_within_step: True
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -23,7 +23,7 @@ horizon_steps: 4
act_steps: 4
use_ddim: True
ddim_steps: 5
ft_denoising_steps: 5
ft_denoising_steps: 0
n_steps: 300 # each episode takes max_episode_steps / act_steps steps
render_num: 0
@ -59,7 +59,7 @@ shape_meta:
shape: [7]
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -20,7 +20,7 @@ denoising_steps: 20
cond_steps: 1
horizon_steps: 4
act_steps: 4
ft_denoising_steps: 10
ft_denoising_steps: 0
n_steps: 75 # each episode takes max_episode_steps / act_steps steps
render_num: 0
@ -45,7 +45,7 @@ env:
reset_within_step: True
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -23,7 +23,7 @@ horizon_steps: 4
act_steps: 4
use_ddim: True
ddim_steps: 5
ft_denoising_steps: 5
ft_denoising_steps: 0
n_steps: 300 # each episode takes max_episode_steps / act_steps steps
render_num: 0
@ -59,7 +59,7 @@ shape_meta:
shape: [7]
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -20,7 +20,7 @@ denoising_steps: 20
cond_steps: 1
horizon_steps: 4
act_steps: 4
ft_denoising_steps: 10
ft_denoising_steps: 0
n_steps: 400 # each episode takes max_episode_steps / act_steps steps
render_num: 0
@ -45,7 +45,7 @@ env:
reset_within_step: True
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -23,7 +23,7 @@ horizon_steps: 4
act_steps: 4
use_ddim: True
ddim_steps: 5
ft_denoising_steps: 5
ft_denoising_steps: 0
n_steps: 400 # each episode takes max_episode_steps / act_steps steps
render_num: 0
@ -59,7 +59,7 @@ shape_meta:
shape: [7]
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -20,7 +20,7 @@ denoising_steps: 20
cond_steps: 1
horizon_steps: 4
act_steps: 4
ft_denoising_steps: 10
ft_denoising_steps: 0
n_steps: 100 # each episode takes max_episode_steps / act_steps steps
render_num: 0
@ -45,7 +45,7 @@ env:
reset_within_step: True
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -23,7 +23,7 @@ horizon_steps: 4
act_steps: 4
use_ddim: True
ddim_steps: 5
ft_denoising_steps: 5
ft_denoising_steps: 0
n_steps: 400 # each episode takes max_episode_steps / act_steps steps
render_num: 0
@ -59,7 +59,7 @@ shape_meta:
shape: [7]
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -20,7 +20,7 @@ denoising_steps: 20
cond_steps: 1
horizon_steps: 8
act_steps: 8
ft_denoising_steps: 10
ft_denoising_steps: 0
n_steps: 400 # each episode takes max_episode_steps / act_steps steps
render_num: 0
@ -48,7 +48,7 @@ env:
reset_within_step: True
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -23,7 +23,7 @@ horizon_steps: 8
act_steps: 8
use_ddim: True
ddim_steps: 5
ft_denoising_steps: 5
ft_denoising_steps: 0
n_steps: 200 # each episode takes max_episode_steps / act_steps steps
render_num: 0
@ -63,7 +63,7 @@ shape_meta:
shape: [14]
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -20,7 +20,7 @@ denoising_steps: 20
cond_steps: 1
horizon_steps: 16
act_steps: 8
ft_denoising_steps: 10
ft_denoising_steps: 0
n_steps: 100 # each episode takes max_episode_steps / act_steps steps
render_num: 0
@ -48,7 +48,7 @@ env:
reset_within_step: True
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -23,7 +23,7 @@ horizon_steps: 16
act_steps: 8
use_ddim: True
ddim_steps: 5
ft_denoising_steps: 5
ft_denoising_steps: 0
n_steps: 400 # each episode takes max_episode_steps / act_steps steps
render_num: 0
@ -63,7 +63,7 @@ shape_meta:
shape: [14]
model:
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
_target_: model.diffusion.diffusion_eval_ft.DiffusionEval
ft_denoising_steps: ${ft_denoising_steps}
predict_epsilon: True
denoised_clip_value: 1.0

View File

@ -20,8 +20,8 @@ class DiffusionEval(DiffusionModel):
def __init__(
self,
network_path,
ft_denoising_steps, # if running pre-trained model (not fine-tuned), set it to zero; if running fine-tuned model, need to specify the correct number of denoising steps fine-tuned, so that here it knows which model (base or ft) to use for each denoising step
use_ddim=False,
ft_denoising_steps=0, # if running fine-tuned model, need to specify the correct number of denoising steps fine-tuned, so that here it knows which model (base or ft) to use for each denoising step
**kwargs,
):
# do not let base class load model