151 lines
5.8 KiB
Python
151 lines
5.8 KiB
Python
"""
|
|
For evaluating RL fine-tuned diffusion policy
|
|
|
|
Account for frozen base policy for early denoising steps and fine-tuned policy for later denoising steps
|
|
|
|
"""
|
|
|
|
import copy
|
|
import logging
|
|
|
|
import torch
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
from model.diffusion.diffusion import DiffusionModel
|
|
from model.diffusion.sampling import extract
|
|
|
|
|
|
class DiffusionEval(DiffusionModel):
|
|
def __init__(
|
|
self,
|
|
network_path,
|
|
ft_denoising_steps, # if running pre-trained model (not fine-tuned), set it to zero; if running fine-tuned model, need to specify the correct number of denoising steps fine-tuned, so that here it knows which model (base or ft) to use for each denoising step
|
|
use_ddim=False,
|
|
**kwargs,
|
|
):
|
|
# do not let base class load model
|
|
super().__init__(use_ddim=use_ddim, network_path=None, **kwargs)
|
|
self.ft_denoising_steps = ft_denoising_steps
|
|
checkpoint = torch.load(
|
|
network_path, map_location=self.device, weights_only=True
|
|
) # 'network.mlp_mean...', 'actor.mlp_mean...', 'actor_ft.mlp_mean...'
|
|
|
|
# Set up base model --- techncally not needed if all denoising steps are fine-tuned
|
|
self.actor = self.network
|
|
try:
|
|
base_weights = {
|
|
key.split("actor.")[1]: checkpoint["model"][key]
|
|
for key in checkpoint["model"]
|
|
if "actor." in key
|
|
}
|
|
use_ft = True
|
|
self.actor.load_state_dict(base_weights, strict=True)
|
|
except Exception:
|
|
assert ft_denoising_steps == 0, (
|
|
"If no base policy weights are found, ft_denoising_steps must be 0"
|
|
)
|
|
base_weights = {
|
|
key.split("network.")[1]: checkpoint["model"][key]
|
|
for key in checkpoint["model"]
|
|
if "network." in key
|
|
}
|
|
use_ft = False
|
|
logging.info("Actor weights not found. Using pre-trained weights!")
|
|
self.actor.load_state_dict(base_weights, strict=True)
|
|
logging.info("Loaded base policy weights from %s", network_path)
|
|
|
|
# Always set up fine-tuned model
|
|
if use_ft:
|
|
self.actor_ft = copy.deepcopy(self.network)
|
|
ft_weights = {
|
|
key.split("actor_ft.")[1]: checkpoint["model"][key]
|
|
for key in checkpoint["model"]
|
|
if "actor_ft." in key
|
|
}
|
|
self.actor_ft.load_state_dict(ft_weights, strict=True)
|
|
logging.info("Loaded fine-tuned policy weights from %s", network_path)
|
|
|
|
# override
|
|
def p_mean_var(
|
|
self,
|
|
x,
|
|
t,
|
|
cond,
|
|
index=None,
|
|
deterministic=False,
|
|
):
|
|
noise = self.actor(x, t, cond=cond)
|
|
if self.use_ddim:
|
|
ft_indices = torch.where(
|
|
index >= (self.ddim_steps - self.ft_denoising_steps)
|
|
)[0]
|
|
else:
|
|
ft_indices = torch.where(t < self.ft_denoising_steps)[0]
|
|
|
|
# overwrite noise for fine-tuning steps
|
|
if len(ft_indices) > 0:
|
|
cond_ft = {key: cond[key][ft_indices] for key in cond}
|
|
noise_ft = self.actor_ft(x[ft_indices], t[ft_indices], cond=cond_ft)
|
|
noise[ft_indices] = noise_ft
|
|
|
|
# Predict x_0
|
|
if self.predict_epsilon:
|
|
if self.use_ddim:
|
|
"""
|
|
x₀ = (xₜ - √ (1-αₜ) ε )/ √ αₜ
|
|
"""
|
|
alpha = extract(self.ddim_alphas, index, x.shape)
|
|
alpha_prev = extract(self.ddim_alphas_prev, index, x.shape)
|
|
sqrt_one_minus_alpha = extract(
|
|
self.ddim_sqrt_one_minus_alphas, index, x.shape
|
|
)
|
|
x_recon = (x - sqrt_one_minus_alpha * noise) / (alpha**0.5)
|
|
else:
|
|
"""
|
|
x₀ = √ 1\α̅ₜ xₜ - √ 1\α̅ₜ-1 ε
|
|
"""
|
|
x_recon = (
|
|
extract(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
|
|
- extract(self.sqrt_recipm1_alphas_cumprod, t, x.shape) * noise
|
|
)
|
|
else: # directly predicting x₀
|
|
x_recon = noise
|
|
if self.denoised_clip_value is not None:
|
|
x_recon.clamp_(-self.denoised_clip_value, self.denoised_clip_value)
|
|
if self.use_ddim:
|
|
# re-calculate noise based on clamped x_recon - default to false in HF, but let's use it here
|
|
noise = (x - alpha ** (0.5) * x_recon) / sqrt_one_minus_alpha
|
|
|
|
# Clip epsilon for numerical stability in policy gradient - not sure if this is helpful yet, but the value can be huge sometimes. This has no effect if DDPM is used
|
|
if self.use_ddim and self.eps_clip_value is not None:
|
|
noise.clamp_(-self.eps_clip_value, self.eps_clip_value)
|
|
|
|
# Get mu
|
|
if self.use_ddim:
|
|
"""
|
|
μ = √ αₜ₋₁ x₀ + √(1-αₜ₋₁ - σₜ²) ε
|
|
"""
|
|
if deterministic:
|
|
etas = torch.zeros((x.shape[0], 1, 1)).to(x.device)
|
|
else:
|
|
etas = self.eta(cond).unsqueeze(1) # B x 1 x (Da or 1)
|
|
sigma = (
|
|
etas
|
|
* ((1 - alpha_prev) / (1 - alpha) * (1 - alpha / alpha_prev)) ** 0.5
|
|
).clamp_(min=1e-10)
|
|
dir_xt_coef = (1.0 - alpha_prev - sigma**2).clamp_(min=0).sqrt()
|
|
mu = (alpha_prev**0.5) * x_recon + dir_xt_coef * noise
|
|
var = sigma**2
|
|
logvar = torch.log(var)
|
|
else:
|
|
"""
|
|
μₜ = β̃ₜ √ α̅ₜ₋₁/(1-α̅ₜ)x₀ + √ αₜ (1-α̅ₜ₋₁)/(1-α̅ₜ)xₜ
|
|
"""
|
|
mu = (
|
|
extract(self.ddpm_mu_coef1, t, x.shape) * x_recon
|
|
+ extract(self.ddpm_mu_coef2, t, x.shape) * x
|
|
)
|
|
logvar = extract(self.ddpm_logvar_clipped, t, x.shape)
|
|
return mu, logvar
|