fancy_gym/alr_envs/utils/make_env_helpers.py

372 lines
14 KiB
Python
Raw Normal View History

2022-07-11 16:18:18 +02:00
import re
import uuid
from collections.abc import MutableMapping
2022-06-30 14:08:54 +02:00
from copy import deepcopy
2022-07-11 16:18:18 +02:00
from math import ceil
from typing import Iterable, Type, Union
2021-04-21 10:45:34 +02:00
import gym
import numpy as np
2022-07-11 16:18:18 +02:00
import alr_envs
try:
from dm_control import suite, manipulation, composer
from dm_control.rl import control
except ImportError:
pass
try:
import metaworld
except Exception:
# catch Exception due to Mujoco-py
pass
from gym.envs.registration import registry
from gym.envs.registration import register
2022-06-30 14:08:54 +02:00
from gym.wrappers import TimeAwareObservation
2022-05-03 19:51:54 +02:00
from alr_envs.black_box.black_box_wrapper import BlackBoxWrapper
from alr_envs.black_box.factory.basis_generator_factory import get_basis_generator
2022-07-11 16:18:18 +02:00
from alr_envs.black_box.factory.controller_factory import get_controller
from alr_envs.black_box.factory.phase_generator_factory import get_phase_generator
from alr_envs.black_box.factory.trajectory_generator_factory import get_trajectory_generator
from alr_envs.black_box.raw_interface_wrapper import RawInterfaceWrapper
2022-06-30 14:08:54 +02:00
from alr_envs.utils.utils import nested_update
2022-07-11 16:18:18 +02:00
ALL_FRAMEWORK_TYPES = ['meta', 'dmc', 'gym']
def make_rank(env_id: str, seed: int, rank: int = 0, return_callable=True, **kwargs):
"""
TODO: Do we need this?
Generate a callable to create a new gym environment with a given seed.
The rank is added to the seed and can be used for example when using vector environments.
E.g. [make_rank("my_env_name-v0", 123, i) for i in range(8)] creates a list of 8 environments
with seeds 123 through 130.
Hence, testing environments should be seeded with a value which is offset by the number of training environments.
Here e.g. [make_rank("my_env_name-v0", 123 + 8, i) for i in range(5)] for 5 testing environmetns
Args:
env_id: name of the environment
seed: seed for deterministic behaviour
rank: environment rank for deterministic over multiple seeds behaviour
return_callable: If True returns a callable to create the environment instead of the environment itself.
2021-04-21 10:45:34 +02:00
Returns:
"""
def f():
return make(env_id, seed + rank, **kwargs)
return f if return_callable else f()
2021-04-21 10:45:34 +02:00
2022-06-30 14:08:54 +02:00
def make(env_id, seed, **kwargs):
2022-07-07 10:47:04 +02:00
return _make(env_id, seed, **kwargs)
2022-06-30 14:08:54 +02:00
def _make(env_id: str, seed, **kwargs):
"""
Converts an env_id to an environment with the gym API.
This also works for DeepMind Control Suite interface_wrappers
for which domain name and task name are expected to be separated by "-".
Args:
env_id: gym name or env_id of the form "domain_name-task_name" for DMC tasks
**kwargs: Additional kwargs for the constructor such as pixel observations, etc.
Returns: Gym environment
"""
2022-07-07 10:47:04 +02:00
# 'dmc:domain-task'
# 'gym:name-vX'
# 'meta:name-vX'
# 'meta:bb:name-vX'
# 'hand:name-vX'
# 'name-vX'
# 'bb:name-vX'
#
# env_id.split(':')
# if 'dmc' :
2021-11-30 16:11:32 +01:00
2022-07-11 16:18:18 +02:00
if ':' in env_id:
split_id = env_id.split(':')
framework, env_id = split_id[-2:]
else:
framework = None
2022-07-11 16:18:18 +02:00
if framework == 'metaworld':
# MetaWorld env
2022-07-11 16:18:18 +02:00
env = make_metaworld(env_id, seed=seed, **kwargs)
elif framework == 'dmc':
# DeepMind Controlp
env = make_dmc(env_id, seed=seed, **kwargs)
else:
env = make_gym(env_id, seed=seed, **kwargs)
return env
2021-04-21 10:45:34 +02:00
2022-07-11 16:18:18 +02:00
def _make_wrapped_env(env_id: str, wrappers: Iterable[Type[gym.Wrapper]], seed=1, **kwargs):
"""
Helper function for creating a wrapped gym environment using MPs.
2022-06-30 14:08:54 +02:00
It adds all provided wrappers to the specified environment and verifies at least one RawInterfaceWrapper is
provided to expose the interface for MPs.
Args:
env_id: name of the environment
2022-06-30 14:08:54 +02:00
wrappers: list of wrappers (at least an RawInterfaceWrapper),
seed: seed of environment
Returns: gym environment with all specified wrappers applied
"""
# _env = gym.make(env_id)
_env = make(env_id, seed, **kwargs)
2022-06-29 09:37:18 +02:00
has_black_box_wrapper = False
for w in wrappers:
2022-06-29 09:37:18 +02:00
# only wrap the environment if not BlackBoxWrapper, e.g. for vision
if issubclass(w, RawInterfaceWrapper):
has_black_box_wrapper = True
_env = w(_env)
if not has_black_box_wrapper:
raise ValueError("An RawInterfaceWrapper is required in order to leverage movement primitive environments.")
2022-05-03 19:51:54 +02:00
return _env
2022-06-30 14:08:54 +02:00
def make_bb(
env_id: str, wrappers: Iterable, black_box_kwargs: MutableMapping, traj_gen_kwargs: MutableMapping,
2022-07-11 16:18:18 +02:00
controller_kwargs: MutableMapping, phase_kwargs: MutableMapping, basis_kwargs: MutableMapping, seed: int = 1,
2022-06-30 14:08:54 +02:00
**kwargs):
2022-05-03 19:51:54 +02:00
"""
This can also be used standalone for manually building a custom DMP environment.
Args:
2022-06-30 14:08:54 +02:00
black_box_kwargs: kwargs for the black-box wrapper
2022-06-29 09:37:18 +02:00
basis_kwargs: kwargs for the basis generator
phase_kwargs: kwargs for the phase generator
controller_kwargs: kwargs for the tracking controller
2022-05-03 19:51:54 +02:00
env_id: base_env_name,
2022-07-06 09:05:35 +02:00
wrappers: list of wrappers (at least an RawInterfaceWrapper),
2022-05-03 19:51:54 +02:00
seed: seed of environment
2022-06-29 09:37:18 +02:00
traj_gen_kwargs: dict of at least {num_dof: int, num_basis: int} for DMP
2022-05-03 19:51:54 +02:00
Returns: DMP wrapped gym env
"""
2022-06-29 09:37:18 +02:00
_verify_time_limit(traj_gen_kwargs.get("duration", None), kwargs.get("time_limit", None))
2022-06-30 14:08:54 +02:00
learn_sub_trajs = black_box_kwargs.get('learn_sub_trajectories')
do_replanning = black_box_kwargs.get('replanning_schedule')
if learn_sub_trajs and do_replanning:
raise ValueError('Cannot used sub-trajectory learning and replanning together.')
if learn_sub_trajs or do_replanning:
# add time_step observation when replanning
2022-07-11 16:18:18 +02:00
if not any(issubclass(w, TimeAwareObservation) for w in kwargs['wrappers']):
# Add as first wrapper in order to alter observation
kwargs['wrappers'].insert(0, TimeAwareObservation)
env = _make_wrapped_env(env_id=env_id, wrappers=wrappers, seed=seed, **kwargs)
2022-06-30 14:08:54 +02:00
2022-07-11 16:18:18 +02:00
traj_gen_kwargs['action_dim'] = traj_gen_kwargs.get('action_dim', np.prod(env.action_space.shape).item())
2022-06-29 09:37:18 +02:00
2022-06-30 14:08:54 +02:00
if black_box_kwargs.get('duration') is None:
2022-07-11 16:18:18 +02:00
black_box_kwargs['duration'] = env.spec.max_episode_steps * env.dt
2022-06-30 14:08:54 +02:00
if phase_kwargs.get('tau') is None:
phase_kwargs['tau'] = black_box_kwargs['duration']
if learn_sub_trajs is not None:
# We have to learn the length when learning sub_trajectories trajectories
phase_kwargs['learn_tau'] = True
2022-05-03 19:51:54 +02:00
phase_gen = get_phase_generator(**phase_kwargs)
basis_gen = get_basis_generator(phase_generator=phase_gen, **basis_kwargs)
controller = get_controller(**controller_kwargs)
2022-06-29 09:37:18 +02:00
traj_gen = get_trajectory_generator(basis_generator=basis_gen, **traj_gen_kwargs)
2022-07-11 16:18:18 +02:00
bb_env = BlackBoxWrapper(env, trajectory_generator=traj_gen, tracking_controller=controller,
2022-06-30 14:08:54 +02:00
**black_box_kwargs)
2022-06-29 09:37:18 +02:00
return bb_env
2022-06-29 09:37:18 +02:00
def make_bb_env_helper(**kwargs):
2022-05-03 19:51:54 +02:00
"""
2022-06-29 09:37:18 +02:00
Helper function for registering a black box gym environment.
2022-05-03 19:51:54 +02:00
Args:
**kwargs: expects at least the following:
{
"name": base environment name.
2022-06-29 09:37:18 +02:00
"wrappers": list of wrappers (at least an BlackBoxWrapper is required),
"traj_gen_kwargs": {
"trajectory_generator_type": type_of_your_movement_primitive,
2022-05-03 19:51:54 +02:00
non default arguments for the movement primitive instance
...
}
"controller_kwargs": {
"controller_type": type_of_your_controller,
2022-06-29 09:37:18 +02:00
non default arguments for the tracking_controller instance
2022-05-03 19:51:54 +02:00
...
},
"basis_generator_kwargs": {
"basis_generator_type": type_of_your_basis_generator,
non default arguments for the basis generator instance
...
},
"phase_generator_kwargs": {
"phase_generator_type": type_of_your_phase_generator,
non default arguments for the phase generator instance
...
},
}
Returns: MP wrapped gym env
"""
seed = kwargs.pop("seed", None)
wrappers = kwargs.pop("wrappers")
traj_gen_kwargs = kwargs.pop("trajectory_generator_kwargs", {})
black_box_kwargs = kwargs.pop('black_box_kwargs', {})
2022-06-29 09:37:18 +02:00
contr_kwargs = kwargs.pop("controller_kwargs", {})
phase_kwargs = kwargs.pop("phase_generator_kwargs", {})
basis_kwargs = kwargs.pop("basis_generator_kwargs", {})
2021-11-15 09:10:03 +01:00
2022-06-30 14:08:54 +02:00
return make_bb(env_id=kwargs.pop("name"), wrappers=wrappers,
black_box_kwargs=black_box_kwargs,
traj_gen_kwargs=traj_gen_kwargs, controller_kwargs=contr_kwargs,
phase_kwargs=phase_kwargs,
basis_kwargs=basis_kwargs, **kwargs, seed=seed)
2021-11-15 09:10:03 +01:00
2022-07-11 16:18:18 +02:00
def make_dmc(
env_id: Union[str, composer.Environment, control.Environment],
seed: int = None,
visualize_reward: bool = True,
time_limit: Union[None, float] = None,
**kwargs
):
if not re.match(r"\w+-\w+", env_id):
raise ValueError("env_id does not have the following structure: 'domain_name-task_name'")
domain_name, task_name = env_id.split("-")
if task_name.endswith("_vision"):
# TODO
raise ValueError("The vision interface for manipulation tasks is currently not supported.")
if (domain_name, task_name) not in suite.ALL_TASKS and task_name not in manipulation.ALL:
raise ValueError(f'Specified domain "{domain_name}" and task "{task_name}" combination does not exist.')
# env_id = f'dmc_{domain_name}_{task_name}_{seed}-v1'
gym_id = uuid.uuid4().hex + '-v1'
task_kwargs = {'random': seed}
if time_limit is not None:
task_kwargs['time_limit'] = time_limit
# create task
# Accessing private attribute because DMC does not expose time_limit or step_limit.
# Only the current time_step/time as well as the control_timestep can be accessed.
if domain_name == "manipulation":
env = manipulation.load(environment_name=task_name, seed=seed)
max_episode_steps = ceil(env._time_limit / env.control_timestep())
else:
env = suite.load(domain_name=domain_name, task_name=task_name, task_kwargs=task_kwargs,
visualize_reward=visualize_reward, environment_kwargs=kwargs)
max_episode_steps = int(env._step_limit)
register(
id=gym_id,
entry_point='alr_envs.dmc.dmc_wrapper:DMCWrapper',
kwargs={'env': lambda: env},
max_episode_steps=max_episode_steps,
)
env = gym.make(gym_id)
env.seed(seed=seed)
return env
def make_metaworld(env_id, seed, **kwargs):
if env_id not in metaworld.ML1.ENV_NAMES:
raise ValueError(f'Specified environment "{env_id}" not present in metaworld ML1.')
_env = metaworld.envs.ALL_V2_ENVIRONMENTS_GOAL_OBSERVABLE[env_id + "-goal-observable"](seed=seed, **kwargs)
# setting this avoids generating the same initialization after each reset
_env._freeze_rand_vec = False
# New argument to use global seeding
_env.seeded_rand_vec = True
# Manually set spec, as metaworld environments are not registered via gym
# _env.unwrapped.spec = EnvSpec(env_id)
# Set Timelimit based on the maximum allowed path length of the environment
# _env = gym.wrappers.TimeLimit(_env, max_episode_steps=_env.max_path_length)
# _env.seed(seed)
# _env.action_space.seed(seed)
# _env.observation_space.seed(seed)
# _env.goal_space.seed(seed)
gym_id = uuid.uuid4().hex + '-v1'
register(
id=gym_id,
entry_point=lambda: _env,
max_episode_steps=_env.max_path_length,
)
# TODO enable checker when the incorrect dtype of obs and observation space are fixed by metaworld
env = gym.make(gym_id, disable_env_checker=True)
env.seed(seed=seed)
return env
def make_gym(env_id, seed, **kwargs):
# This access is required to allow for nested dict updates for BB envs
spec = registry.get(env_id)
all_kwargs = deepcopy(spec.kwargs)
nested_update(all_kwargs, kwargs)
kwargs = all_kwargs
# Add seed to kwargs in case it is a predefined gym+dmc hybrid environment.
# if env_id.startswith("dmc") or any(s in env_id.lower() for s in ['promp', 'dmp', 'prodmp']):
all_bb_envs = sum(alr_envs.ALL_MOVEMENT_PRIMITIVE_ENVIRONMENTS.values(), [])
if env_id.startswith("dmc") or env_id in all_bb_envs:
kwargs.update({"seed": seed})
# Gym
env = gym.make(env_id, **kwargs)
env.seed(seed)
env.action_space.seed(seed)
env.observation_space.seed(seed)
return env
def _verify_time_limit(mp_time_limit: Union[None, float], env_time_limit: Union[None, float]):
"""
When using DMC check if a manually specified time limit matches the trajectory duration the MP receives.
Mostly, the time_limit for DMC is not specified and the default values from DMC are taken.
This check, however, can only been done after instantiating the environment.
It can be found in the BaseMP class.
Args:
2022-06-30 14:08:54 +02:00
mp_time_limit: max trajectory length of traj_gen in seconds
env_time_limit: max trajectory length of DMC environment in seconds
Returns:
"""
if mp_time_limit is not None and env_time_limit is not None:
assert mp_time_limit == env_time_limit, \
f"The specified 'time_limit' of {env_time_limit}s does not match " \
f"the duration of {mp_time_limit}s for the MP."
def _verify_dof(base_env: gym.Env, dof: int):
action_shape = np.prod(base_env.action_space.shape)
assert dof == action_shape, \
f"The specified degrees of freedom ('num_dof') {dof} do not match " \
f"the action space of {action_shape} the base environments"