2022-04-28 09:05:28 +02:00
|
|
|
from abc import ABC, abstractmethod
|
|
|
|
from typing import Union, Tuple
|
|
|
|
|
|
|
|
import gym
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from gym import spaces
|
|
|
|
from gym.envs.mujoco import MujocoEnv
|
2022-04-29 18:46:09 +02:00
|
|
|
|
2022-04-28 09:05:28 +02:00
|
|
|
from policies import get_policy_class, BaseController
|
|
|
|
from mp_pytorch.mp.mp_interfaces import MPInterface
|
|
|
|
|
|
|
|
|
|
|
|
class BaseMPWrapper(gym.Env, ABC):
|
|
|
|
"""
|
|
|
|
Base class for movement primitive based gym.Wrapper implementations.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
env: The (wrapped) environment this wrapper is applied on
|
|
|
|
num_dof: Dimension of the action space of the wrapped env
|
|
|
|
num_basis: Number of basis functions per dof
|
|
|
|
duration: Length of the trajectory of the movement primitive in seconds
|
|
|
|
post_traj_time: Time for which the last position of the trajectory is fed to the environment to continue
|
|
|
|
simulation in seconds
|
|
|
|
policy_type: Type or object defining the policy that is used to generate action based on the trajectory
|
|
|
|
weight_scale: Scaling parameter for the actions given to this wrapper
|
|
|
|
render_mode: Equivalent to gym render mode
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
env: MujocoEnv,
|
|
|
|
mp: MPInterface,
|
|
|
|
duration: float,
|
|
|
|
policy_type: Union[str, BaseController] = None,
|
|
|
|
render_mode: str = None,
|
|
|
|
**mp_kwargs
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
assert env.dt is not None
|
|
|
|
self.env = env
|
|
|
|
self.dt = env.dt
|
|
|
|
self.duration = duration
|
|
|
|
self.traj_steps = int(duration / self.dt)
|
|
|
|
self.post_traj_steps = self.env.spec.max_episode_steps - self.traj_steps
|
|
|
|
|
2022-04-29 18:46:09 +02:00
|
|
|
# TODO: move to constructer, use policy factory instead what Fabian already coded
|
2022-04-28 09:05:28 +02:00
|
|
|
if isinstance(policy_type, str):
|
|
|
|
# pop policy kwargs here such that they are not passed to the initialize_mp method
|
|
|
|
self.policy = get_policy_class(policy_type, self, **mp_kwargs.pop('policy_kwargs', {}))
|
|
|
|
else:
|
|
|
|
self.policy = policy_type
|
|
|
|
|
|
|
|
self.mp = mp
|
|
|
|
self.env = env
|
|
|
|
|
|
|
|
# rendering
|
|
|
|
self.render_mode = render_mode
|
|
|
|
self.render_kwargs = {}
|
2022-04-29 18:46:09 +02:00
|
|
|
# self.time_steps = np.linspace(0, self.duration, self.traj_steps + 1)
|
|
|
|
self.time_steps = np.linspace(0, self.duration, self.traj_steps)
|
2022-04-28 09:05:28 +02:00
|
|
|
self.mp.set_mp_times(self.time_steps)
|
|
|
|
|
|
|
|
# action_bounds = np.inf * np.ones((np.prod(self.mp.num_params)))
|
|
|
|
min_action_bounds, max_action_bounds = mp.get_param_bounds()
|
|
|
|
self.action_space = gym.spaces.Box(low=min_action_bounds.numpy(), high=max_action_bounds.numpy(),
|
|
|
|
dtype=np.float32)
|
|
|
|
|
|
|
|
self.active_obs = self.set_active_obs()
|
|
|
|
self.observation_space = spaces.Box(low=self.env.observation_space.low[self.active_obs],
|
|
|
|
high=self.env.observation_space.high[self.active_obs],
|
|
|
|
dtype=self.env.observation_space.dtype)
|
|
|
|
|
|
|
|
def get_trajectory(self, action: np.ndarray) -> Tuple:
|
|
|
|
self.mp.set_params(action)
|
2022-04-29 18:46:09 +02:00
|
|
|
self.mp.set_boundary_conditions(bc_time=self.time_steps[:1], bc_pos=self.current_pos, bc_vel=self.current_vel)
|
2022-04-28 09:05:28 +02:00
|
|
|
traj_dict = self.mp.get_mp_trajs(get_pos = True, get_vel = True)
|
|
|
|
trajectory_tensor, velocity_tensor = traj_dict['pos'], traj_dict['vel']
|
|
|
|
|
|
|
|
trajectory = trajectory_tensor.numpy()
|
|
|
|
velocity = velocity_tensor.numpy()
|
2022-04-29 18:46:09 +02:00
|
|
|
|
2022-04-28 09:05:28 +02:00
|
|
|
if self.post_traj_steps > 0:
|
|
|
|
trajectory = np.vstack([trajectory, np.tile(trajectory[-1, :], [self.post_traj_steps, 1])])
|
|
|
|
velocity = np.vstack([velocity, np.zeros(shape=(self.post_traj_steps, self.mp.num_dof))])
|
|
|
|
|
|
|
|
return trajectory, velocity
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def set_active_obs(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
@property
|
|
|
|
@abstractmethod
|
|
|
|
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
|
|
|
|
"""
|
|
|
|
Returns the current position of the action/control dimension.
|
|
|
|
The dimensionality has to match the action/control dimension.
|
|
|
|
This is not required when exclusively using velocity control,
|
|
|
|
it should, however, be implemented regardless.
|
|
|
|
E.g. The joint positions that are directly or indirectly controlled by the action.
|
|
|
|
"""
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
@property
|
|
|
|
@abstractmethod
|
|
|
|
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
|
|
|
|
"""
|
|
|
|
Returns the current velocity of the action/control dimension.
|
|
|
|
The dimensionality has to match the action/control dimension.
|
|
|
|
This is not required when exclusively using position control,
|
|
|
|
it should, however, be implemented regardless.
|
|
|
|
E.g. The joint velocities that are directly or indirectly controlled by the action.
|
|
|
|
"""
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
2022-04-29 18:46:09 +02:00
|
|
|
@abstractmethod
|
|
|
|
def _step_callback(self, action):
|
|
|
|
pass
|
|
|
|
|
2022-04-28 09:05:28 +02:00
|
|
|
def step(self, action: np.ndarray):
|
|
|
|
""" This function generates a trajectory based on a MP and then does the usual loop over reset and step"""
|
2022-04-29 18:46:09 +02:00
|
|
|
# TODO: Think about sequencing
|
|
|
|
# TODO: put in a callback function here which every environment can implement. Important for e.g. BP to allow the
|
|
|
|
# TODO: Reward Function rather here?
|
|
|
|
# agent to learn when to release the ball
|
2022-04-28 09:05:28 +02:00
|
|
|
trajectory, velocity = self.get_trajectory(action)
|
|
|
|
|
|
|
|
trajectory_length = len(trajectory)
|
|
|
|
actions = np.zeros(shape=(trajectory_length,) + self.env.action_space.shape)
|
|
|
|
if isinstance(self.env.observation_space, spaces.Dict): # For goal environments
|
|
|
|
observations = np.zeros(shape=(trajectory_length,) + self.env.observation_space["observation"].shape,
|
|
|
|
dtype=self.env.observation_space.dtype)
|
|
|
|
else:
|
|
|
|
observations = np.zeros(shape=(trajectory_length,) + self.env.observation_space.shape,
|
|
|
|
dtype=self.env.observation_space.dtype)
|
|
|
|
rewards = np.zeros(shape=(trajectory_length,))
|
|
|
|
trajectory_return = 0
|
|
|
|
|
|
|
|
infos = dict()
|
|
|
|
|
|
|
|
for t, pos_vel in enumerate(zip(trajectory, velocity)):
|
|
|
|
ac = self.policy.get_action(pos_vel[0], pos_vel[1])
|
|
|
|
actions[t, :] = np.clip(ac, self.env.action_space.low, self.env.action_space.high)
|
|
|
|
obs, rewards[t], done, info = self.env.step(actions[t, :])
|
|
|
|
observations[t, :] = obs["observation"] if isinstance(self.env.observation_space, spaces.Dict) else obs
|
|
|
|
trajectory_return += rewards[t]
|
|
|
|
for k, v in info.items():
|
|
|
|
elems = infos.get(k, [None] * trajectory_length)
|
|
|
|
elems[t] = v
|
|
|
|
infos[k] = elems
|
|
|
|
# infos['step_infos'].append(info)
|
|
|
|
if self.render_mode:
|
|
|
|
self.render(mode=self.render_mode, **self.render_kwargs)
|
|
|
|
if done:
|
|
|
|
break
|
|
|
|
infos.update({k: v[:t + 1] for k, v in infos.items()})
|
|
|
|
infos['trajectory'] = trajectory
|
2022-04-29 18:46:09 +02:00
|
|
|
# TODO: remove step information? Might be relevant for debugging -> return only in debug mode (verbose)?
|
2022-04-28 09:05:28 +02:00
|
|
|
infos['step_actions'] = actions[:t + 1]
|
|
|
|
infos['step_observations'] = observations[:t + 1]
|
|
|
|
infos['step_rewards'] = rewards[:t + 1]
|
|
|
|
infos['trajectory_length'] = t + 1
|
|
|
|
done = True
|
|
|
|
return self.get_observation_from_step(observations[t]), trajectory_return, done, infos
|
|
|
|
|
|
|
|
def reset(self):
|
|
|
|
return self.get_observation_from_step(self.env.reset())
|
|
|
|
|
|
|
|
def render(self, mode='human', **kwargs):
|
|
|
|
"""Only set render options here, such that they can be used during the rollout.
|
|
|
|
This only needs to be called once"""
|
|
|
|
self.render_mode = mode
|
|
|
|
self.render_kwargs = kwargs
|
|
|
|
# self.env.render(mode=self.render_mode, **self.render_kwargs)
|
|
|
|
self.env.render(mode=self.render_mode)
|
|
|
|
|
|
|
|
def get_observation_from_step(self, observation: np.ndarray) -> np.ndarray:
|
|
|
|
return observation[self.active_obs]
|
2022-04-29 18:46:09 +02:00
|
|
|
|
|
|
|
def plot_trajs(self, des_trajs, des_vels):
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import matplotlib
|
|
|
|
matplotlib.use('TkAgg')
|
|
|
|
pos_fig = plt.figure('positions')
|
|
|
|
vel_fig = plt.figure('velocities')
|
|
|
|
for i in range(des_trajs.shape[1]):
|
|
|
|
plt.figure(pos_fig.number)
|
|
|
|
plt.subplot(des_trajs.shape[1], 1, i + 1)
|
|
|
|
plt.plot(np.ones(des_trajs.shape[0])*self.current_pos[i])
|
|
|
|
plt.plot(des_trajs[:, i])
|
|
|
|
|
|
|
|
plt.figure(vel_fig.number)
|
|
|
|
plt.subplot(des_vels.shape[1], 1, i + 1)
|
|
|
|
plt.plot(np.ones(des_trajs.shape[0])*self.current_vel[i])
|
|
|
|
plt.plot(des_vels[:, i])
|