fancy_gym/alr_envs/examples/examples_general.py

102 lines
3.4 KiB
Python
Raw Normal View History

from collections import defaultdict
import gym
import numpy as np
import alr_envs
def example_general(env_id="Pendulum-v0", seed=1, iterations=1000, render=True):
"""
Example for running any env in the step based setting.
This also includes DMC environments when leveraging our custom make_env function.
Args:
env_id: OpenAI/Custom gym task id or either `domain_name-task_name` or `manipulation-environment_name` for DMC tasks
seed: seed for deterministic behaviour
iterations: Number of rollout steps to run
render: Render the episode
Returns:
"""
env = alr_envs.make_env(env_id, seed)
rewards = 0
obs = env.reset()
print("Observation shape: ", env.observation_space.shape)
print("Action shape: ", env.action_space.shape)
# number of environment steps
for i in range(iterations):
obs, reward, done, info = env.step(env.action_space.sample())
rewards += reward
if render:
env.render()
if done:
print(rewards)
rewards = 0
obs = env.reset()
def example_async(env_id="alr_envs:HoleReacher-v0", n_cpu=4, seed=int('533D', 16), n_samples=800):
"""
Example for running any env in a vectorized multiprocessing setting to generate more samples faster.
This also includes DMC and DMP environments when leveraging our custom make_env function.
Be aware, increasing the number of environments reduces the total length of the individual episodes.
Args:
env_id: OpenAI/Custom gym task id or either `domain_name-task_name` or `manipulation-environment_name` for DMC tasks
seed: seed for deterministic behaviour
n_cpu: Number of cpus cores to use in parallel
n_samples: number of samples generated in total by all environments.
Returns: Tuple of (obs, reward, done, info) with type np.ndarray
"""
env = gym.vector.AsyncVectorEnv([alr_envs.make_env_rank(env_id, seed, i) for i in range(n_cpu)])
# OR
# envs = gym.vector.AsyncVectorEnv([make_env(env_id, seed + i) for i in range(n_cpu)])
# for plotting
rewards = np.zeros(n_cpu)
buffer = defaultdict(list)
obs = env.reset()
# this would generate more samples than requested if n_samples % num_envs != 0
repeat = int(np.ceil(n_samples / env.num_envs))
for i in range(repeat):
obs, reward, done, info = env.step(env.action_space.sample())
buffer['obs'].append(obs)
buffer['reward'].append(reward)
buffer['done'].append(done)
buffer['info'].append(info)
rewards += reward
if np.any(done):
print(f"Reward at iteration {i}: {rewards[done]}")
rewards[done] = 0
# do not return values above threshold
return *map(lambda v: np.stack(v)[:n_samples], buffer.values()),
if __name__ == '__main__':
render = False
# Basic gym task
example_general("Pendulum-v0", seed=10, iterations=200, render=render)
#
# # Basis task from framework
example_general("alr_envs:HoleReacher-v0", seed=10, iterations=200, render=render)
#
# # OpenAI Mujoco task
example_general("HalfCheetah-v2", seed=10, render=render)
#
# # Mujoco task from framework
example_general("alr_envs:ALRReacher-v0", seed=10, iterations=200, render=render)
# Vectorized multiprocessing environments
example_async(env_id="alr_envs:HoleReacher-v0", n_cpu=2, seed=int('533D', 16), n_samples=2 * 200)