fancy_gym/alr_envs/utils/__init__.py

65 lines
2.1 KiB
Python
Raw Normal View History

import re
from typing import Union
import gym
from gym.envs.registration import register
def make(
id: str,
seed: int = 1,
visualize_reward: bool = True,
from_pixels: bool = False,
height: int = 84,
width: int = 84,
camera_id: int = 0,
frame_skip: int = 1,
episode_length: Union[None, int] = None,
environment_kwargs: dict = {},
time_limit: Union[None, float] = None,
channels_first: bool = True
):
# Adopted from: https://github.com/denisyarats/dmc2gym/blob/master/dmc2gym/__init__.py
# License: MIT
# Copyright (c) 2020 Denis Yarats
assert re.match(r"\w+-\w+", id), "env_id does not have the following structure: 'domain_name-task_name'"
domain_name, task_name = id.split("-")
env_id = f'dmc_{domain_name}_{task_name}_{seed}-v1'
if from_pixels:
assert not visualize_reward, 'cannot use visualize reward when learning from pixels'
# shorten episode length
if episode_length is None:
# Default lengths for benchmarking suite is 1000 and for manipulation tasks 250
episode_length = 250 if domain_name == "manipulation" else 1000
max_episode_steps = (episode_length + frame_skip - 1) // frame_skip
if env_id not in gym.envs.registry.env_specs:
task_kwargs = {'random': seed}
# if seed is not None:
# task_kwargs['random'] = seed
if time_limit is not None:
task_kwargs['time_limit'] = time_limit
register(
id=env_id,
entry_point='alr_envs.utils.dmc_wrapper:DMCWrapper',
kwargs=dict(
domain_name=domain_name,
task_name=task_name,
task_kwargs=task_kwargs,
environment_kwargs=environment_kwargs,
visualize_reward=visualize_reward,
from_pixels=from_pixels,
height=height,
width=width,
camera_id=camera_id,
frame_skip=frame_skip,
channels_first=channels_first,
),
max_episode_steps=max_episode_steps,
)
return gym.make(env_id)