Added basic test cases for functionality and determinism

This commit is contained in:
ottofabian 2021-07-26 17:07:45 +02:00
parent 7c92c0b92a
commit 0dec89ff17
2 changed files with 108 additions and 0 deletions

0
test/__init__.py Normal file
View File

108
test/test_envs.py Normal file
View File

@ -0,0 +1,108 @@
import unittest
import gym
import numpy as np
import alr_envs # noqa
from alr_envs.utils.make_env_helpers import make_env
ALL_SPECS = list(spec for spec in gym.envs.registry.all() if "alr_envs" in spec.entry_point)
SEED = 1
class TestEnvironments(unittest.TestCase):
def _run_env(self, env_id, iterations=None, seed=SEED, render=False):
"""
Example for running a DMC based env in the step based setting.
The env_id has to be specified as `domain_name-task_name` or
for manipulation tasks as `manipulation-environment_name`
Args:
env_id: Either `domain_name-task_name` or `manipulation-environment_name`
iterations: Number of rollout steps to run
seed= random seeding
render: Render the episode
Returns:
"""
env: gym.Env = make_env(env_id, seed=seed)
rewards = []
observations = []
dones = []
obs = env.reset()
self._verify_observations(obs, env.observation_space, "reset()")
length = env.spec.max_episode_steps
if iterations is None:
if length is None:
iterations = 1
else:
iterations = length
# number of samples(multiple environment steps)
for i in range(iterations):
observations.append(obs)
ac = env.action_space.sample()
# ac = np.random.uniform(env.action_space.low, env.action_space.high, env.action_space.shape)
obs, reward, done, info = env.step(ac)
self._verify_observations(obs, env.observation_space, "step()")
self._verify_reward(reward)
self._verify_done(done)
rewards.append(reward)
dones.append(done)
if render:
env.render("human")
if done:
obs = env.reset()
observations.append(obs)
env.close()
del env
return np.array(observations), np.array(rewards), np.array(dones)
def _verify_observations(self, obs, observation_space, obs_type="reset()"):
self.assertTrue(observation_space.contains(obs),
f"Observation {obs} received from {obs_type} "
f"not contained in observation space {observation_space}.")
def _verify_reward(self, reward):
self.assertIsInstance(reward, float, f"Returned {reward} as reward, expected float.")
def _verify_done(self, done):
self.assertIsInstance(done, bool, f"Returned {done} as done flag, expected bool.")
def test_environment_functionality(self):
"""Tests that environments runs without errors using random actions."""
for spec in ALL_SPECS:
# try:
with self.subTest(msg=spec.id):
self._run_env(spec.id)
def test_environment_determinism(self):
"""Tests that identical seeds produce identical trajectories."""
seed = 0
# Iterate over two trajectories generated using identical sequences of
# random actions, and with identical task random states. Check that the
# observations, rewards, discounts and step types are identical.
for spec in ALL_SPECS:
# try:
with self.subTest(msg=spec.id):
self._run_env(spec.id)
traj1 = self._run_env(spec.id, seed=seed)
traj2 = self._run_env(spec.id, seed=seed)
for i, time_step in enumerate(zip(*traj1, *traj2)):
obs1, rwd1, done1, obs2, rwd2, done2 = time_step
self.assertTrue(np.array_equal(obs1, obs2), f"Observations [{i}] {obs1} and {obs2} do not match.")
self.assertEqual(rwd1, rwd2, f"Rewards [{i}] {rwd1} and {rwd2} do not match.")
self.assertEqual(done1, done2, f"Dones [{i}] {done1} and {done2} do not match.")
if __name__ == '__main__':
unittest.main()