wip
This commit is contained in:
parent
80933eba09
commit
7a725077e2
0
alr_envs/classic_control/base_reacher/__init__.py
Normal file
0
alr_envs/classic_control/base_reacher/__init__.py
Normal file
142
alr_envs/classic_control/base_reacher/base_reacher_direct.py
Normal file
142
alr_envs/classic_control/base_reacher/base_reacher_direct.py
Normal file
@ -0,0 +1,142 @@
|
||||
from typing import Iterable, Union
|
||||
from abc import ABCMeta, abstractmethod
|
||||
import gym
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from gym import spaces
|
||||
from gym.utils import seeding
|
||||
from alr_envs.classic_control.utils import check_self_collision
|
||||
|
||||
|
||||
class BaseReacherEnv(gym.Env):
|
||||
"""
|
||||
Simple Reaching Task without any physics simulation.
|
||||
Returns no reward until 150 time steps. This allows the agent to explore the space, but requires precise actions
|
||||
towards the end of the trajectory.
|
||||
"""
|
||||
|
||||
def __init__(self, n_links: int, random_start: bool = True,
|
||||
allow_self_collision: bool = False, collision_penalty: float = 1000):
|
||||
super().__init__()
|
||||
self.link_lengths = np.ones(n_links)
|
||||
self.n_links = n_links
|
||||
self._dt = 0.01
|
||||
|
||||
self.random_start = random_start
|
||||
|
||||
self._joints = None
|
||||
self._joint_angles = None
|
||||
self._angle_velocity = None
|
||||
self._is_collided = False
|
||||
self.allow_self_collision = allow_self_collision
|
||||
self.collision_penalty = collision_penalty
|
||||
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
|
||||
self._start_vel = np.zeros(self.n_links)
|
||||
|
||||
self.max_torque = 1
|
||||
self.steps_before_reward = 199
|
||||
|
||||
action_bound = np.ones((self.n_links,)) * self.max_torque
|
||||
state_bound = np.hstack([
|
||||
[np.pi] * self.n_links, # cos
|
||||
[np.pi] * self.n_links, # sin
|
||||
[np.inf] * self.n_links, # velocity
|
||||
[np.inf] * 2, # x-y coordinates of target distance
|
||||
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
||||
])
|
||||
self.action_space = spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||
self.observation_space = spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||
|
||||
# containers for plotting
|
||||
self.metadata = {'render.modes': ["human"]}
|
||||
self.fig = None
|
||||
|
||||
self._steps = 0
|
||||
self.seed()
|
||||
|
||||
@property
|
||||
def dt(self) -> Union[float, int]:
|
||||
return self._dt
|
||||
|
||||
@property
|
||||
def current_pos(self):
|
||||
return self._joint_angles.copy()
|
||||
|
||||
@property
|
||||
def current_vel(self):
|
||||
return self._angle_velocity.copy()
|
||||
|
||||
def reset(self):
|
||||
# Sample only orientation of first link, i.e. the arm is always straight.
|
||||
if self.random_start:
|
||||
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
|
||||
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
|
||||
self._start_pos = self._joint_angles.copy()
|
||||
else:
|
||||
self._joint_angles = self._start_pos
|
||||
|
||||
self._angle_velocity = self._start_vel
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
|
||||
return self._get_obs().copy()
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
A single step with action in torque space
|
||||
"""
|
||||
|
||||
# action = self._add_action_noise(action)
|
||||
ac = np.clip(action, -self.max_torque, self.max_torque)
|
||||
|
||||
self._angle_velocity = self._angle_velocity + self.dt * ac
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
||||
self._update_joints()
|
||||
|
||||
if not self.allow_self_collision:
|
||||
self_collision = check_self_collision(line_points_in_taskspace)
|
||||
if np.any(np.abs(self._joint_angles) > np.pi) and not self.allow_self_collision:
|
||||
self_collision = True
|
||||
|
||||
self._is_collided = self._check_collisions()
|
||||
|
||||
reward, info = self._get_reward(action)
|
||||
|
||||
self._steps += 1
|
||||
done = False
|
||||
|
||||
return self._get_obs().copy(), reward, done, info
|
||||
|
||||
def _update_joints(self):
|
||||
"""
|
||||
update joints to get new end-effector position. The other links are only required for rendering.
|
||||
Returns:
|
||||
|
||||
"""
|
||||
angles = np.cumsum(self._joint_angles)
|
||||
x = self.link_lengths * np.vstack([np.cos(angles), np.sin(angles)])
|
||||
self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0)
|
||||
|
||||
@abstractmethod
|
||||
def _get_reward(self, action: np.ndarray) -> (float, dict):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _get_obs(self) -> np.ndarray:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _check_collisions(self) -> bool:
|
||||
pass
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
def close(self):
|
||||
del self.fig
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.n_links].T
|
142
alr_envs/classic_control/base_reacher/base_reacher_torque.py
Normal file
142
alr_envs/classic_control/base_reacher/base_reacher_torque.py
Normal file
@ -0,0 +1,142 @@
|
||||
from typing import Iterable, Union
|
||||
from abc import ABCMeta, abstractmethod
|
||||
import gym
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from gym import spaces
|
||||
from gym.utils import seeding
|
||||
from alr_envs.classic_control.utils import check_self_collision
|
||||
|
||||
|
||||
class BaseReacherEnv(gym.Env):
|
||||
"""
|
||||
Simple Reaching Task without any physics simulation.
|
||||
Returns no reward until 150 time steps. This allows the agent to explore the space, but requires precise actions
|
||||
towards the end of the trajectory.
|
||||
"""
|
||||
|
||||
def __init__(self, n_links: int, random_start: bool = True,
|
||||
allow_self_collision: bool = False, collision_penalty: float = 1000):
|
||||
super().__init__()
|
||||
self.link_lengths = np.ones(n_links)
|
||||
self.n_links = n_links
|
||||
self._dt = 0.01
|
||||
|
||||
self.random_start = random_start
|
||||
|
||||
self._joints = None
|
||||
self._joint_angles = None
|
||||
self._angle_velocity = None
|
||||
self._is_collided = False
|
||||
self.allow_self_collision = allow_self_collision
|
||||
self.collision_penalty = collision_penalty
|
||||
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
|
||||
self._start_vel = np.zeros(self.n_links)
|
||||
|
||||
self.max_torque = 1
|
||||
self.steps_before_reward = 199
|
||||
|
||||
action_bound = np.ones((self.n_links,)) * self.max_torque
|
||||
state_bound = np.hstack([
|
||||
[np.pi] * self.n_links, # cos
|
||||
[np.pi] * self.n_links, # sin
|
||||
[np.inf] * self.n_links, # velocity
|
||||
[np.inf] * 2, # x-y coordinates of target distance
|
||||
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
||||
])
|
||||
self.action_space = spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||
self.observation_space = spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||
|
||||
# containers for plotting
|
||||
self.metadata = {'render.modes': ["human"]}
|
||||
self.fig = None
|
||||
|
||||
self._steps = 0
|
||||
self.seed()
|
||||
|
||||
@property
|
||||
def dt(self) -> Union[float, int]:
|
||||
return self._dt
|
||||
|
||||
@property
|
||||
def current_pos(self):
|
||||
return self._joint_angles.copy()
|
||||
|
||||
@property
|
||||
def current_vel(self):
|
||||
return self._angle_velocity.copy()
|
||||
|
||||
def reset(self):
|
||||
# Sample only orientation of first link, i.e. the arm is always straight.
|
||||
if self.random_start:
|
||||
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
|
||||
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
|
||||
self._start_pos = self._joint_angles.copy()
|
||||
else:
|
||||
self._joint_angles = self._start_pos
|
||||
|
||||
self._angle_velocity = self._start_vel
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
|
||||
return self._get_obs().copy()
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
A single step with action in torque space
|
||||
"""
|
||||
|
||||
# action = self._add_action_noise(action)
|
||||
ac = np.clip(action, -self.max_torque, self.max_torque)
|
||||
|
||||
self._angle_velocity = self._angle_velocity + self.dt * ac
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
||||
self._update_joints()
|
||||
|
||||
if not self.allow_self_collision:
|
||||
self_collision = check_self_collision(line_points_in_taskspace)
|
||||
if np.any(np.abs(self._joint_angles) > np.pi) and not self.allow_self_collision:
|
||||
self_collision = True
|
||||
|
||||
self._is_collided = self._check_collisions()
|
||||
|
||||
reward, info = self._get_reward(action)
|
||||
|
||||
self._steps += 1
|
||||
done = False
|
||||
|
||||
return self._get_obs().copy(), reward, done, info
|
||||
|
||||
def _update_joints(self):
|
||||
"""
|
||||
update joints to get new end-effector position. The other links are only required for rendering.
|
||||
Returns:
|
||||
|
||||
"""
|
||||
angles = np.cumsum(self._joint_angles)
|
||||
x = self.link_lengths * np.vstack([np.cos(angles), np.sin(angles)])
|
||||
self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0)
|
||||
|
||||
@abstractmethod
|
||||
def _get_reward(self, action: np.ndarray) -> (float, dict):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _get_obs(self) -> np.ndarray:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _check_collisions(self) -> bool:
|
||||
pass
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
def close(self):
|
||||
del self.fig
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.n_links].T
|
@ -10,7 +10,7 @@ def intersect(A, B, C, D):
|
||||
|
||||
|
||||
def check_self_collision(line_points):
|
||||
"""Checks whether line segments and intersect"""
|
||||
"""Checks whether line segments intersect"""
|
||||
for i, line1 in enumerate(line_points):
|
||||
for line2 in line_points[i + 2:, :, :]:
|
||||
if intersect(line1[0], line1[-1], line2[0], line2[-1]):
|
||||
|
@ -89,8 +89,8 @@ if __name__ == '__main__':
|
||||
# Basic gym task
|
||||
# example_general("Pendulum-v0", seed=10, iterations=200, render=True)
|
||||
#
|
||||
# # Basis task from framework
|
||||
# example_general("alr_envs:HoleReacher-v0", seed=10, iterations=200, render=True)
|
||||
# Basis task from framework
|
||||
example_general("alr_envs:HoleReacher-v0", seed=10, iterations=200, render=True)
|
||||
#
|
||||
# # OpenAI Mujoco task
|
||||
# example_general("HalfCheetah-v2", seed=10, render=True)
|
||||
@ -99,4 +99,4 @@ if __name__ == '__main__':
|
||||
# example_general("alr_envs:ALRReacher-v0", seed=10, iterations=200, render=True)
|
||||
|
||||
# Vectorized multiprocessing environments
|
||||
example_async(env_id="alr_envs:HoleReacher-v0", n_cpu=2, seed=int('533D', 16), n_samples=2 * 200)
|
||||
# example_async(env_id="alr_envs:HoleReacher-v0", n_cpu=2, seed=int('533D', 16), n_samples=2 * 200)
|
||||
|
Loading…
Reference in New Issue
Block a user