fix tt issues -> context + traj.length

This commit is contained in:
Onur 2022-04-05 10:47:01 +02:00
parent 209eac352c
commit 855f0f1c7b
2 changed files with 28 additions and 63 deletions

View File

@ -236,16 +236,6 @@ register(
}
)
# Beerpong devel big table
register(
id='ALRBeerPong-v3',
entry_point='alr_envs.alr.mujoco:ALRBeerBongEnv',
max_episode_steps=600,
kwargs={
"rndm_goal": True,
"cup_goal_pos": [-0.3, -1.2]
}
)
# Motion Primitive Environments
@ -413,32 +403,6 @@ for _v in _versions:
)
ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append(_env_id)
## Beerpong- Big table devel
register(
id='BeerpongProMP-v3',
entry_point='alr_envs.utils.make_env_helpers:make_promp_env_helper',
kwargs={
"name": f"alr_envs:ALRBeerPong-v3",
"wrappers": [mujoco.beerpong.MPWrapper],
"mp_kwargs": {
"num_dof": 7,
"num_basis": 5,
"duration": 1,
"post_traj_time": 2,
"policy_type": "motor",
"weights_scale": 1,
"zero_start": True,
"zero_goal": False,
"policy_kwargs": {
"p_gains": np.array([ 1.5, 5, 2.55, 3, 2., 2, 1.25]),
"d_gains": np.array([0.02333333, 0.1, 0.0625, 0.08, 0.03, 0.03, 0.0125])
}
}
}
)
ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append('BeerpongProMP-v3')
## Table Tennis
ctxt_dim = [2, 4]
for _v, cd in enumerate(ctxt_dim):
@ -453,7 +417,7 @@ for _v, cd in enumerate(ctxt_dim):
"num_dof": 7,
"num_basis": 2,
"duration": 1.25,
"post_traj_time": 1.5,
"post_traj_time": 4.5,
"policy_type": "motor",
"weights_scale": 1.0,
"zero_start": True,
@ -467,28 +431,28 @@ for _v, cd in enumerate(ctxt_dim):
)
ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append(_env_id)
register(
id='TableTennisProMP-v2',
entry_point='alr_envs.utils.make_env_helpers:make_promp_env_helper',
kwargs={
"name": "alr_envs:TableTennis2DCtxt-v1",
"wrappers": [mujoco.table_tennis.MPWrapper],
"mp_kwargs": {
"num_dof": 7,
"num_basis": 2,
"duration": 1.,
"post_traj_time": 2.5,
"policy_type": "motor",
"weights_scale": 1,
"off": -0.05,
"bandwidth_factor": 3.5,
"zero_start": True,
"zero_goal": False,
"policy_kwargs": {
"p_gains": 0.5*np.array([1.0, 4.0, 2.0, 4.0, 1.0, 4.0, 1.0]),
"d_gains": 0.5*np.array([0.1, 0.4, 0.2, 0.4, 0.1, 0.4, 0.1])
}
}
}
)
ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append("TableTennisProMP-v2")
# register(
# id='TableTennisProMP-v2',
# entry_point='alr_envs.utils.make_env_helpers:make_promp_env_helper',
# kwargs={
# "name": "alr_envs:TableTennis2DCtxt-v1",
# "wrappers": [mujoco.table_tennis.MPWrapper],
# "mp_kwargs": {
# "num_dof": 7,
# "num_basis": 2,
# "duration": 1.25,
# "post_traj_time": 4.5,
# #"width": 0.01,
# #"off": 0.01,
# "policy_type": "motor",
# "weights_scale": 1.0,
# "zero_start": True,
# "zero_goal": False,
# "policy_kwargs": {
# "p_gains": 0.5*np.array([1.0, 4.0, 2.0, 4.0, 1.0, 4.0, 1.0]),
# "d_gains": 0.5*np.array([0.1, 0.4, 0.2, 0.4, 0.1, 0.4, 0.1])
# }
# }
# }
# )
# ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append("TableTennisProMP-v2")

View File

@ -11,7 +11,8 @@ from alr_envs.alr.mujoco.table_tennis.tt_reward import TT_Reward
#TODO: Check for simulation stability. Make sure the code runs even for sim crash
# MAX_EPISODE_STEPS = 1750
MAX_EPISODE_STEPS = 1375
# MAX_EPISODE_STEPS = 1375
MAX_EPISODE_STEPS = 2875
BALL_NAME_CONTACT = "target_ball_contact"
BALL_NAME = "target_ball"
TABLE_NAME = 'table_tennis_table'