added MPEnv
This commit is contained in:
parent
b4ad3e6ddd
commit
95e9b8be47
@ -1,7 +1,7 @@
|
||||
from gym.envs.registration import register
|
||||
|
||||
from alr_envs.stochastic_search.functions.f_rosenbrock import Rosenbrock
|
||||
# from alr_envs.utils.wrapper.dmp_wrapper import DmpWrapper
|
||||
# from alr_envs.utils.mps.dmp_wrapper import DmpWrapper
|
||||
|
||||
# Mujoco
|
||||
|
||||
|
@ -1,27 +1,34 @@
|
||||
from typing import Union
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from gym.utils import seeding
|
||||
from matplotlib import patches
|
||||
|
||||
from alr_envs.classic_control.utils import check_self_collision
|
||||
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||
|
||||
|
||||
class HoleReacher(gym.Env):
|
||||
|
||||
def __init__(self, n_links, hole_x, hole_width, hole_depth, allow_self_collision=False,
|
||||
allow_wall_collision=False, collision_penalty=1000):
|
||||
class HoleReacher(MPEnv):
|
||||
|
||||
def __init__(self, n_links, hole_x: Union[None, float] = None, hole_depth: Union[None, float] = None,
|
||||
hole_width: float = 1., random_start: bool = True, allow_self_collision: bool = False,
|
||||
allow_wall_collision: bool = False, collision_penalty: bool = 1000):
|
||||
self.n_links = n_links
|
||||
self.link_lengths = np.ones((n_links, 1))
|
||||
|
||||
# task
|
||||
self.hole_x = hole_x # x-position of center of hole
|
||||
self.hole_width = hole_width # width of hole
|
||||
self.hole_depth = hole_depth # depth of hole
|
||||
self.random_start = random_start
|
||||
|
||||
self.bottom_center_of_hole = np.hstack([hole_x, -hole_depth])
|
||||
self.top_center_of_hole = np.hstack([hole_x, 0])
|
||||
self.left_wall_edge = np.hstack([hole_x - self.hole_width / 2, 0])
|
||||
self.right_wall_edge = np.hstack([hole_x + self.hole_width / 2, 0])
|
||||
# provided initial parameters
|
||||
self._hole_x = hole_x # x-position of center of hole
|
||||
self._hole_width = hole_width # width of hole
|
||||
self._hole_depth = hole_depth # depth of hole
|
||||
|
||||
# temp containers to store current setting
|
||||
self._tmp_hole_x = None
|
||||
self._tmp_hole_width = None
|
||||
self._tmp_hole_depth = None
|
||||
|
||||
# collision
|
||||
self.allow_self_collision = allow_self_collision
|
||||
@ -29,11 +36,11 @@ class HoleReacher(gym.Env):
|
||||
self.collision_penalty = collision_penalty
|
||||
|
||||
# state
|
||||
self._joints = None
|
||||
self._joint_angles = None
|
||||
self._angle_velocity = None
|
||||
self.start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
|
||||
self.start_vel = np.zeros(self.n_links)
|
||||
self._joints = None
|
||||
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
|
||||
self._start_vel = np.zeros(self.n_links)
|
||||
|
||||
self.dt = 0.01
|
||||
# self.time_limit = 2
|
||||
@ -43,35 +50,64 @@ class HoleReacher(gym.Env):
|
||||
[np.pi] * self.n_links, # cos
|
||||
[np.pi] * self.n_links, # sin
|
||||
[np.inf] * self.n_links, # velocity
|
||||
[np.inf], # hole width
|
||||
[np.inf], # hole depth
|
||||
[np.inf] * 2, # x-y coordinates of target distance
|
||||
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
||||
])
|
||||
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||
|
||||
plt.ion()
|
||||
self.fig = None
|
||||
rect_1 = patches.Rectangle((-self.n_links, -1),
|
||||
self.n_links + self.hole_x - self.hole_width / 2, 1,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
rect_2 = patches.Rectangle((self.hole_x + self.hole_width / 2, -1),
|
||||
self.n_links - self.hole_x + self.hole_width / 2, 1,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
rect_3 = patches.Rectangle((self.hole_x - self.hole_width / 2, -1), self.hole_width,
|
||||
1 - self.hole_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
|
||||
self.patches = [rect_1, rect_2, rect_3]
|
||||
self.seed()
|
||||
|
||||
@property
|
||||
def corrected_obs_index(self):
|
||||
return np.hstack([
|
||||
[self.random_start] * self.n_links, # cos
|
||||
[self.random_start] * self.n_links, # sin
|
||||
[self.random_start] * self.n_links, # velocity
|
||||
[self._hole_width is None], # hole width
|
||||
[self._hole_depth is None], # hole width
|
||||
[True] * 2, # x-y coordinates of target distance
|
||||
[False] # env steps
|
||||
])
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.n_links].T
|
||||
|
||||
def configure(self, context):
|
||||
pass
|
||||
def _generate_hole(self):
|
||||
hole_x = self.np_random.uniform(0.5, 3.5, 1) if self._hole_x is None else np.copy(self._hole_x)
|
||||
hole_width = self.np_random.uniform(0.5, 0.1, 1) if self._hole_width is None else np.copy(self._hole_width)
|
||||
# TODO we do not want this right now.
|
||||
hole_depth = self.np_random.uniform(1, 1, 1) if self._hole_depth is None else np.copy(self._hole_depth)
|
||||
|
||||
self.bottom_center_of_hole = np.hstack([hole_x, -hole_depth])
|
||||
self.top_center_of_hole = np.hstack([hole_x, 0])
|
||||
self.left_wall_edge = np.hstack([hole_x - hole_width / 2, 0])
|
||||
self.right_wall_edge = np.hstack([hole_x + hole_width / 2, 0])
|
||||
|
||||
return hole_x, hole_width, hole_depth
|
||||
|
||||
def reset(self):
|
||||
self._joint_angles = self.start_pos
|
||||
self._angle_velocity = self.start_vel
|
||||
if self.random_start:
|
||||
# MAybe change more than dirst seed
|
||||
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
|
||||
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
|
||||
else:
|
||||
self._joint_angles = self._start_pos
|
||||
|
||||
self._tmp_hole_x, self._tmp_hole_width, self._tmp_hole_depth = self._generate_hole()
|
||||
self.set_patches()
|
||||
|
||||
self._angle_velocity = self._start_vel
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
@ -96,15 +132,14 @@ class HoleReacher(gym.Env):
|
||||
success = False
|
||||
reward = 0
|
||||
if not self._is_collided:
|
||||
# return reward only in last time step
|
||||
if self._steps == 199:
|
||||
dist = np.linalg.norm(self.end_effector - self.bottom_center_of_hole)
|
||||
reward = - dist ** 2
|
||||
success = dist < 0.005
|
||||
else:
|
||||
# Episode terminates when colliding, hence return reward
|
||||
dist = np.linalg.norm(self.end_effector - self.bottom_center_of_hole)
|
||||
# if self.collision_penalty != 0:
|
||||
# reward = -self.collision_penalty
|
||||
# else:
|
||||
reward = - dist ** 2 - self.collision_penalty
|
||||
|
||||
reward -= 5e-8 * np.sum(acc ** 2)
|
||||
@ -112,8 +147,6 @@ class HoleReacher(gym.Env):
|
||||
info = {"is_collided": self._is_collided, "is_success": success}
|
||||
|
||||
self._steps += 1
|
||||
|
||||
# done = self._steps * self.dt > self.time_limit or self._is_collided
|
||||
done = self._is_collided
|
||||
|
||||
return self._get_obs().copy(), reward, done, info
|
||||
@ -148,6 +181,8 @@ class HoleReacher(gym.Env):
|
||||
np.cos(theta),
|
||||
np.sin(theta),
|
||||
self._angle_velocity,
|
||||
self._hole_width,
|
||||
self._hole_depth,
|
||||
self.end_effector - self.bottom_center_of_hole,
|
||||
self._steps
|
||||
])
|
||||
@ -155,31 +190,26 @@ class HoleReacher(gym.Env):
|
||||
def get_forward_kinematics(self, num_points_per_link=1):
|
||||
theta = self._joint_angles[:, None]
|
||||
|
||||
if num_points_per_link > 1:
|
||||
intermediate_points = np.linspace(0, 1, num_points_per_link)
|
||||
else:
|
||||
intermediate_points = 1
|
||||
|
||||
intermediate_points = np.linspace(0, 1, num_points_per_link) if num_points_per_link > 1 else 1
|
||||
accumulated_theta = np.cumsum(theta, axis=0)
|
||||
|
||||
endeffector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
|
||||
end_effector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
|
||||
|
||||
x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
|
||||
y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
|
||||
|
||||
endeffector[0, :, 0] = x[0, :]
|
||||
endeffector[0, :, 1] = y[0, :]
|
||||
end_effector[0, :, 0] = x[0, :]
|
||||
end_effector[0, :, 1] = y[0, :]
|
||||
|
||||
for i in range(1, self.n_links):
|
||||
endeffector[i, :, 0] = x[i, :] + endeffector[i - 1, -1, 0]
|
||||
endeffector[i, :, 1] = y[i, :] + endeffector[i - 1, -1, 1]
|
||||
end_effector[i, :, 0] = x[i, :] + end_effector[i - 1, -1, 0]
|
||||
end_effector[i, :, 1] = y[i, :] + end_effector[i - 1, -1, 1]
|
||||
|
||||
return np.squeeze(endeffector + self._joints[0, :])
|
||||
return np.squeeze(end_effector + self._joints[0, :])
|
||||
|
||||
def check_wall_collision(self, line_points):
|
||||
|
||||
# all points that are before the hole in x
|
||||
r, c = np.where(line_points[:, :, 0] < (self.hole_x - self.hole_width / 2))
|
||||
r, c = np.where(line_points[:, :, 0] < (self._tmp_hole_x - self._tmp_hole_width / 2))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_before_hole = np.sum(line_points[r, c, 1] < 0)
|
||||
@ -188,7 +218,7 @@ class HoleReacher(gym.Env):
|
||||
return True
|
||||
|
||||
# all points that are after the hole in x
|
||||
r, c = np.where(line_points[:, :, 0] > (self.hole_x + self.hole_width / 2))
|
||||
r, c = np.where(line_points[:, :, 0] > (self._tmp_hole_x + self._tmp_hole_width / 2))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_after_hole = np.sum(line_points[r, c, 1] < 0)
|
||||
@ -197,11 +227,11 @@ class HoleReacher(gym.Env):
|
||||
return True
|
||||
|
||||
# all points that are above the hole
|
||||
r, c = np.where((line_points[:, :, 0] > (self.hole_x - self.hole_width / 2)) & (
|
||||
line_points[:, :, 0] < (self.hole_x + self.hole_width / 2)))
|
||||
r, c = np.where((line_points[:, :, 0] > (self._tmp_hole_x - self._tmp_hole_width / 2)) & (
|
||||
line_points[:, :, 0] < (self._tmp_hole_x + self._tmp_hole_width / 2)))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_in_hole = np.sum(line_points[r, c, 1] < -self.hole_depth)
|
||||
nr_line_points_below_surface_in_hole = np.sum(line_points[r, c, 1] < -self._tmp_hole_depth)
|
||||
|
||||
if nr_line_points_below_surface_in_hole > 0:
|
||||
return True
|
||||
@ -210,28 +240,33 @@ class HoleReacher(gym.Env):
|
||||
|
||||
def render(self, mode='human'):
|
||||
if self.fig is None:
|
||||
plt.ion()
|
||||
self.fig = plt.figure()
|
||||
# plt.ion()
|
||||
# plt.pause(0.01)
|
||||
else:
|
||||
plt.figure(self.fig.number)
|
||||
ax = self.fig.add_subplot(1, 1, 1)
|
||||
|
||||
# limits
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
ax.set_xlim([-lim, lim])
|
||||
ax.set_ylim([-1.1, lim])
|
||||
|
||||
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
self.set_patches()
|
||||
self.fig.show()
|
||||
|
||||
if mode == "human":
|
||||
plt.cla()
|
||||
plt.title(f"Iteration: {self._steps}, distance: {self.end_effector - self.bottom_center_of_hole}")
|
||||
self.fig.gca().set_title(
|
||||
f"Iteration: {self._steps}, distance: {self.end_effector - self.bottom_center_of_hole}")
|
||||
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
|
||||
# Add the patch to the Axes
|
||||
[plt.gca().add_patch(rect) for rect in self.patches]
|
||||
# Arm
|
||||
self.line.set_xdata(self._joints[:, 0])
|
||||
self.line.set_ydata(self._joints[:, 1])
|
||||
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
plt.xlim([-lim, lim])
|
||||
plt.ylim([-1.1, lim])
|
||||
# plt.draw()
|
||||
plt.pause(1e-4) # pushes window to foreground, which is annoying.
|
||||
# self.fig.canvas.flush_events()
|
||||
self.fig.canvas.draw()
|
||||
self.fig.canvas.flush_events()
|
||||
# self.fig.show()
|
||||
|
||||
elif mode == "partial":
|
||||
if self._steps == 1:
|
||||
@ -266,6 +301,24 @@ class HoleReacher(gym.Env):
|
||||
|
||||
plt.pause(0.01)
|
||||
|
||||
def set_patches(self):
|
||||
if self.fig is not None:
|
||||
self.fig.gca().patches = []
|
||||
rect_1 = patches.Rectangle((-self.n_links, -1), self.n_links + self._tmp_hole_x - self._tmp_hole_width / 2,
|
||||
1,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
rect_2 = patches.Rectangle((self._tmp_hole_x + self._tmp_hole_width / 2, -1),
|
||||
self.n_links - self._tmp_hole_x + self._tmp_hole_width / 2, 1,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
rect_3 = patches.Rectangle((self._tmp_hole_x - self._tmp_hole_width / 2, -1), self._tmp_hole_width,
|
||||
1 - self._tmp_hole_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
|
||||
# Add the patch to the Axes
|
||||
self.fig.gca().add_patch(rect_1)
|
||||
self.fig.gca().add_patch(rect_2)
|
||||
self.fig.gca().add_patch(rect_3)
|
||||
|
||||
def close(self):
|
||||
if self.fig is not None:
|
||||
plt.close(self.fig)
|
||||
@ -274,8 +327,8 @@ class HoleReacher(gym.Env):
|
||||
if __name__ == '__main__':
|
||||
nl = 5
|
||||
render_mode = "human" # "human" or "partial" or "final"
|
||||
env = HoleReacher(n_links=nl, allow_self_collision=False, allow_wall_collision=False, hole_width=0.15,
|
||||
hole_depth=1, hole_x=1)
|
||||
env = HoleReacher(n_links=nl, allow_self_collision=False, allow_wall_collision=False, hole_width=None,
|
||||
hole_depth=1, hole_x=None)
|
||||
env.reset()
|
||||
# env.render(mode=render_mode)
|
||||
|
||||
@ -285,11 +338,13 @@ if __name__ == '__main__':
|
||||
ac = 2 * env.action_space.sample()
|
||||
# ac[0] += np.pi/2
|
||||
obs, rew, d, info = env.step(ac)
|
||||
# if i % 1 == 0:
|
||||
if i == 0:
|
||||
env.render(mode=render_mode)
|
||||
|
||||
print(rew)
|
||||
|
||||
if d:
|
||||
break
|
||||
env.reset()
|
||||
|
||||
env.close()
|
||||
|
@ -1,5 +1,5 @@
|
||||
from alr_envs.utils.wrapper.detpmp_wrapper import DetPMPWrapper
|
||||
from alr_envs.utils.wrapper.dmp_wrapper import DmpWrapper
|
||||
from alr_envs.utils.mps.detpmp_wrapper import DetPMPWrapper
|
||||
from alr_envs.utils.mps.dmp_wrapper import DmpWrapper
|
||||
from alr_envs.mujoco.ball_in_a_cup.ball_in_a_cup import ALRBallInACupEnv
|
||||
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
from alr_envs.utils.wrapper.detpmp_wrapper import DetPMPWrapper
|
||||
from alr_envs.utils.mps.detpmp_wrapper import DetPMPWrapper
|
||||
from alr_envs.mujoco.beerpong.beerpong import ALRBeerpongEnv
|
||||
from alr_envs.mujoco.beerpong.beerpong_simple import ALRBeerpongEnv as ALRBeerpongEnvSimple
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
import alr_envs.classic_control.hole_reacher as hr
|
||||
import alr_envs.classic_control.viapoint_reacher as vpr
|
||||
from alr_envs.utils.wrapper.dmp_wrapper import DmpWrapper
|
||||
from alr_envs.utils.wrapper.detpmp_wrapper import DetPMPWrapper
|
||||
from alr_envs.utils.mps.dmp_wrapper import DmpWrapper
|
||||
from alr_envs.utils.mps.detpmp_wrapper import DetPMPWrapper
|
||||
import numpy as np
|
||||
|
||||
|
||||
@ -65,7 +65,7 @@ def make_holereacher_env(rank, seed=0):
|
||||
dt=_env.dt,
|
||||
learn_goal=True,
|
||||
alpha_phase=2,
|
||||
start_pos=_env.start_pos,
|
||||
start_pos=_env._start_pos,
|
||||
policy_type="velocity",
|
||||
weights_scale=50,
|
||||
goal_scale=0.1
|
||||
@ -105,7 +105,7 @@ def make_holereacher_fix_goal_env(rank, seed=0):
|
||||
learn_goal=False,
|
||||
final_pos=np.array([2.02669572, -1.25966385, -1.51618198, -0.80946476, 0.02012344]),
|
||||
alpha_phase=2,
|
||||
start_pos=_env.start_pos,
|
||||
start_pos=_env._start_pos,
|
||||
policy_type="velocity",
|
||||
weights_scale=50,
|
||||
goal_scale=1
|
||||
@ -142,7 +142,7 @@ def make_holereacher_env_pmp(rank, seed=0):
|
||||
num_basis=5,
|
||||
width=0.02,
|
||||
policy_type="velocity",
|
||||
start_pos=_env.start_pos,
|
||||
start_pos=_env._start_pos,
|
||||
duration=2,
|
||||
post_traj_time=0,
|
||||
dt=_env.dt,
|
||||
|
@ -1,5 +1,5 @@
|
||||
from alr_envs.utils.wrapper.dmp_wrapper import DmpWrapper
|
||||
from alr_envs.utils.wrapper.detpmp_wrapper import DetPMPWrapper
|
||||
from alr_envs.utils.mps.dmp_wrapper import DmpWrapper
|
||||
from alr_envs.utils.mps.detpmp_wrapper import DetPMPWrapper
|
||||
import gym
|
||||
from gym.vector.utils import write_to_shared_memory
|
||||
import sys
|
||||
|
@ -2,17 +2,18 @@ import gym
|
||||
import numpy as np
|
||||
from mp_lib import det_promp
|
||||
|
||||
from alr_envs.utils.wrapper.mp_wrapper import MPWrapper
|
||||
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||
from alr_envs.utils.mps.mp_wrapper import MPWrapper
|
||||
|
||||
|
||||
class DetPMPWrapper(MPWrapper):
|
||||
def __init__(self, env, num_dof, num_basis, width, start_pos=None, duration=1, dt=0.01, post_traj_time=0.,
|
||||
policy_type=None, weights_scale=1, zero_start=False, zero_goal=False, **mp_kwargs):
|
||||
def __init__(self, env: MPEnv, num_dof: int, num_basis: int, width: int, start_pos=None, duration: int = 1,
|
||||
dt: float = 0.01, post_traj_time: float = 0., policy_type: str = None, weights_scale: float = 1.,
|
||||
zero_start: bool = False, zero_goal: bool = False, **mp_kwargs):
|
||||
# self.duration = duration # seconds
|
||||
|
||||
super().__init__(env, num_dof, duration, dt, post_traj_time, policy_type, weights_scale,
|
||||
num_basis=num_basis, width=width, start_pos=start_pos, zero_start=zero_start,
|
||||
zero_goal=zero_goal)
|
||||
super().__init__(env, num_dof, dt, duration, post_traj_time, policy_type, weights_scale, num_basis=num_basis,
|
||||
width=width, start_pos=start_pos, zero_start=zero_start, zero_goal=zero_goal, **mp_kwargs)
|
||||
|
||||
action_bounds = np.inf * np.ones((self.mp.n_basis * self.mp.n_dof))
|
||||
self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32)
|
@ -1,19 +1,18 @@
|
||||
from mp_lib.phase import ExpDecayPhaseGenerator
|
||||
from mp_lib.basis import DMPBasisGenerator
|
||||
from mp_lib import dmps
|
||||
import numpy as np
|
||||
import gym
|
||||
import numpy as np
|
||||
from mp_lib import dmps
|
||||
from mp_lib.basis import DMPBasisGenerator
|
||||
from mp_lib.phase import ExpDecayPhaseGenerator
|
||||
|
||||
from alr_envs.utils.wrapper.mp_wrapper import MPWrapper
|
||||
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||
from alr_envs.utils.mps.mp_wrapper import MPWrapper
|
||||
|
||||
|
||||
class DmpWrapper(MPWrapper):
|
||||
|
||||
def __init__(self, env: gym.Env, num_dof: int, num_basis: int,
|
||||
# start_pos: np.ndarray = None,
|
||||
# final_pos: np.ndarray = None,
|
||||
def __init__(self, env: MPEnv, num_dof: int, num_basis: int,
|
||||
duration: int = 1, alpha_phase: float = 2., dt: float = None,
|
||||
learn_goal: bool = False, return_to_start: bool = False, post_traj_time: float = 0.,
|
||||
learn_goal: bool = False, post_traj_time: float = 0.,
|
||||
weights_scale: float = 1., goal_scale: float = 1., bandwidth_factor: float = 3.,
|
||||
policy_type: str = None, render_mode: str = None):
|
||||
|
||||
@ -23,8 +22,6 @@ class DmpWrapper(MPWrapper):
|
||||
env:
|
||||
num_dof:
|
||||
num_basis:
|
||||
start_pos:
|
||||
final_pos:
|
||||
duration:
|
||||
alpha_phase:
|
||||
dt:
|
||||
@ -37,30 +34,17 @@ class DmpWrapper(MPWrapper):
|
||||
self.learn_goal = learn_goal
|
||||
dt = env.dt if hasattr(env, "dt") else dt
|
||||
assert dt is not None
|
||||
# start_pos = start_pos if start_pos is not None else env.start_pos if hasattr(env, "start_pos") else None
|
||||
# TODO: assert start_pos is not None # start_pos will be set in initialize, do we need this here?
|
||||
# if learn_goal:
|
||||
# final_pos = np.zeros_like(start_pos) # arbitrary, will be learned
|
||||
# final_pos = np.zeros((1, num_dof)) # arbitrary, will be learned
|
||||
# else:
|
||||
# final_pos = final_pos if final_pos is not None else start_pos if return_to_start else None
|
||||
# assert final_pos is not None
|
||||
self.t = np.linspace(0, duration, int(duration / dt))
|
||||
self.goal_scale = goal_scale
|
||||
|
||||
super().__init__(env, num_dof, duration, dt, post_traj_time, policy_type, weights_scale, render_mode,
|
||||
num_basis=num_basis,
|
||||
# start_pos=start_pos, final_pos=final_pos,
|
||||
alpha_phase=alpha_phase,
|
||||
bandwidth_factor=bandwidth_factor)
|
||||
super().__init__(env, num_dof, dt, duration, post_traj_time, policy_type, weights_scale, render_mode,
|
||||
num_basis=num_basis, alpha_phase=alpha_phase, bandwidth_factor=bandwidth_factor)
|
||||
|
||||
action_bounds = np.inf * np.ones((np.prod(self.mp.dmp_weights.shape) + (num_dof if learn_goal else 0)))
|
||||
self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32)
|
||||
|
||||
def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5,
|
||||
# start_pos: np.ndarray = None,
|
||||
# final_pos: np.ndarray = None,
|
||||
alpha_phase: float = 2., bandwidth_factor: float = 3.):
|
||||
def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5, alpha_phase: float = 2.,
|
||||
bandwidth_factor: int = 3):
|
||||
|
||||
phase_generator = ExpDecayPhaseGenerator(alpha_phase=alpha_phase, duration=duration)
|
||||
basis_generator = DMPBasisGenerator(phase_generator, duration=duration, num_basis=num_basis,
|
||||
@ -69,15 +53,6 @@ class DmpWrapper(MPWrapper):
|
||||
dmp = dmps.DMP(num_dof=num_dof, basis_generator=basis_generator, phase_generator=phase_generator,
|
||||
num_time_steps=int(duration / dt), dt=dt)
|
||||
|
||||
# dmp.dmp_start_pos = start_pos.reshape((1, num_dof))
|
||||
# in a contextual environment, the start_pos may be not fixed, set in mp_rollout?
|
||||
# TODO: Should we set start_pos in init at all? It's only used after calling rollout anyway...
|
||||
# dmp.dmp_start_pos = start_pos.reshape((1, num_dof)) if start_pos is not None else np.zeros((1, num_dof))
|
||||
|
||||
# weights = np.zeros((num_basis, num_dof))
|
||||
# goal_pos = np.zeros(num_dof) if self.learn_goal else final_pos
|
||||
|
||||
# dmp.set_weights(weights, goal_pos)
|
||||
return dmp
|
||||
|
||||
def goal_and_weights(self, params):
|
||||
@ -87,18 +62,15 @@ class DmpWrapper(MPWrapper):
|
||||
if self.learn_goal:
|
||||
goal_pos = params[0, -self.mp.num_dimensions:] # [num_dof]
|
||||
params = params[:, :-self.mp.num_dimensions] # [1,num_dof]
|
||||
# weight_matrix = np.reshape(params[:, :-self.num_dof], [self.num_basis, self.num_dof])
|
||||
else:
|
||||
goal_pos = self.env.goal_pos # self.mp.dmp_goal_pos.flatten()
|
||||
assert goal_pos is not None
|
||||
# weight_matrix = np.reshape(params, [self.num_basis, self.num_dof])
|
||||
|
||||
weight_matrix = np.reshape(params, self.mp.dmp_weights.shape)
|
||||
weight_matrix = np.reshape(params, self.mp.dmp_weights.shape) # [num_basis, num_dof]
|
||||
return goal_pos * self.goal_scale, weight_matrix * self.weights_scale
|
||||
|
||||
def mp_rollout(self, action):
|
||||
# if self.mp.start_pos is None:
|
||||
self.mp.dmp_start_pos = self.env.init_qpos # start_pos
|
||||
self.mp.dmp_start_pos = self.env.start_pos
|
||||
goal_pos, weight_matrix = self.goal_and_weights(action)
|
||||
self.mp.set_weights(weight_matrix, goal_pos)
|
||||
return self.mp.reference_trajectory(self.t)
|
33
alr_envs/utils/mps/mp_environments.py
Normal file
33
alr_envs/utils/mps/mp_environments.py
Normal file
@ -0,0 +1,33 @@
|
||||
from abc import abstractmethod
|
||||
from typing import Union
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
|
||||
|
||||
class MPEnv(gym.Env):
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def corrected_obs_index(self):
|
||||
"""Returns boolean value for each observation entry
|
||||
whether the observation is returned by the DMP for the contextual case or not.
|
||||
This effectively allows to filter unwanted or unnecessary observations from the full step-based case.
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def start_pos(self) -> Union[float, int, np.ndarray]:
|
||||
"""
|
||||
Returns the current position of the joints
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
@property
|
||||
def goal_pos(self) -> Union[float, int, np.ndarray]:
|
||||
"""
|
||||
Returns the current final position of the joints for the MP.
|
||||
By default this returns the starting position.
|
||||
"""
|
||||
return self.start_pos
|
@ -1,32 +1,18 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from collections import defaultdict
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
|
||||
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||
from alr_envs.utils.policies import get_policy_class
|
||||
|
||||
|
||||
class MPWrapper(gym.Wrapper, ABC):
|
||||
|
||||
def __init__(self,
|
||||
env: gym.Env,
|
||||
num_dof: int,
|
||||
duration: int = 1,
|
||||
dt: float = None,
|
||||
post_traj_time: float = 0.,
|
||||
policy_type: str = None,
|
||||
weights_scale: float = 1.,
|
||||
render_mode: str = None,
|
||||
**mp_kwargs
|
||||
):
|
||||
def __init__(self, env: MPEnv, num_dof: int, dt: float, duration: int = 1, post_traj_time: float = 0.,
|
||||
policy_type: str = None, weights_scale: float = 1., render_mode: str = None, **mp_kwargs):
|
||||
super().__init__(env)
|
||||
|
||||
# self.num_dof = num_dof
|
||||
# self.num_basis = num_basis
|
||||
# self.duration = duration # seconds
|
||||
|
||||
# dt = env.dt if hasattr(env, "dt") else dt
|
||||
assert dt is not None # this should never happen as MPWrapper is a base class
|
||||
self.post_traj_steps = int(post_traj_time / dt)
|
||||
|
||||
@ -40,8 +26,11 @@ class MPWrapper(gym.Wrapper, ABC):
|
||||
self.render_mode = render_mode
|
||||
self.render_kwargs = {}
|
||||
|
||||
# TODO: not yet final
|
||||
# TODO: @Max I think this should not be in this class, this functionality should be part of your sampler.
|
||||
def __call__(self, params, contexts=None):
|
||||
"""
|
||||
Can be used to provide a batch of parameter sets
|
||||
"""
|
||||
params = np.atleast_2d(params)
|
||||
obs = []
|
||||
rewards = []
|
||||
@ -63,7 +52,7 @@ class MPWrapper(gym.Wrapper, ABC):
|
||||
|
||||
def reset(self):
|
||||
obs = self.env.reset()
|
||||
return obs
|
||||
return obs[self.env]
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
""" This function generates a trajectory based on a DMP and then does the usual loop over reset and step"""
|
||||
@ -77,15 +66,9 @@ class MPWrapper(gym.Wrapper, ABC):
|
||||
# self._velocity = velocity
|
||||
|
||||
rewards = 0
|
||||
# infos = defaultdict(list)
|
||||
|
||||
# TODO: @Max Why do we need this configure, states should be part of the model
|
||||
# TODO: Ask Onur if the context distribution needs to be outside the environment
|
||||
# TODO: For now create a new env with each context
|
||||
# TODO: Explicitly call reset before step to obtain context from obs?
|
||||
# self.env.configure(context)
|
||||
# obs = self.env.reset()
|
||||
info = {}
|
||||
# create random obs as the reset function is called externally
|
||||
obs = self.env.observation_space.sample()
|
||||
|
||||
for t, pos_vel in enumerate(zip(trajectory, velocity)):
|
||||
ac = self.policy.get_action(pos_vel[0], pos_vel[1])
|
||||
@ -107,18 +90,6 @@ class MPWrapper(gym.Wrapper, ABC):
|
||||
self.render_mode = mode
|
||||
self.render_kwargs = kwargs
|
||||
|
||||
# def __call__(self, actions):
|
||||
# return self.step(actions)
|
||||
# params = np.atleast_2d(params)
|
||||
# rewards = []
|
||||
# infos = []
|
||||
# for p, c in zip(params, contexts):
|
||||
# reward, info = self.rollout(p, c)
|
||||
# rewards.append(reward)
|
||||
# infos.append(info)
|
||||
#
|
||||
# return np.array(rewards), infos
|
||||
|
||||
@abstractmethod
|
||||
def mp_rollout(self, action):
|
||||
"""
|
Loading…
Reference in New Issue
Block a user