merge
This commit is contained in:
commit
b39104a449
@ -1,7 +1,8 @@
|
|||||||
from gym.envs.registration import register
|
from gym.envs.registration import register
|
||||||
|
|
||||||
from alr_envs.stochastic_search.functions.f_rosenbrock import Rosenbrock
|
from alr_envs.stochastic_search.functions.f_rosenbrock import Rosenbrock
|
||||||
# from alr_envs.utils.wrapper.dmp_wrapper import DmpWrapper
|
|
||||||
|
# from alr_envs.utils.mps.dmp_wrapper import DmpWrapper
|
||||||
|
|
||||||
# Mujoco
|
# Mujoco
|
||||||
|
|
||||||
@ -71,6 +72,17 @@ register(
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
## Balancing Reacher
|
||||||
|
|
||||||
|
register(
|
||||||
|
id='Balancing-v0',
|
||||||
|
entry_point='alr_envs.mujoco:BalancingEnv',
|
||||||
|
max_episode_steps=200,
|
||||||
|
kwargs={
|
||||||
|
"n_links": 5,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
register(
|
register(
|
||||||
id='ALRBallInACupSimple-v0',
|
id='ALRBallInACupSimple-v0',
|
||||||
entry_point='alr_envs.mujoco:ALRBallInACupEnv',
|
entry_point='alr_envs.mujoco:ALRBallInACupEnv',
|
||||||
@ -101,15 +113,7 @@ register(
|
|||||||
|
|
||||||
# Classic control
|
# Classic control
|
||||||
|
|
||||||
register(
|
## Simple Reacher
|
||||||
id='Balancing-v0',
|
|
||||||
entry_point='alr_envs.mujoco:BalancingEnv',
|
|
||||||
max_episode_steps=200,
|
|
||||||
kwargs={
|
|
||||||
"n_links": 5,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
register(
|
||||||
id='SimpleReacher-v0',
|
id='SimpleReacher-v0',
|
||||||
entry_point='alr_envs.classic_control:SimpleReacherEnv',
|
entry_point='alr_envs.classic_control:SimpleReacherEnv',
|
||||||
@ -129,25 +133,6 @@ register(
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
register(
|
|
||||||
id='EpisodicSimpleReacher-v0',
|
|
||||||
entry_point='alr_envs.classic_control:EpisodicSimpleReacherEnv',
|
|
||||||
max_episode_steps=200,
|
|
||||||
kwargs={
|
|
||||||
"n_links": 2,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='EpisodicSimpleReacher-v1',
|
|
||||||
entry_point='alr_envs.classic_control:EpisodicSimpleReacherEnv',
|
|
||||||
max_episode_steps=200,
|
|
||||||
kwargs={
|
|
||||||
"n_links": 2,
|
|
||||||
"random_start": False
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
register(
|
||||||
id='LongSimpleReacher-v0',
|
id='LongSimpleReacher-v0',
|
||||||
entry_point='alr_envs.classic_control:SimpleReacherEnv',
|
entry_point='alr_envs.classic_control:SimpleReacherEnv',
|
||||||
@ -157,6 +142,18 @@ register(
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id='LongSimpleReacher-v1',
|
||||||
|
entry_point='alr_envs.classic_control:SimpleReacherEnv',
|
||||||
|
max_episode_steps=200,
|
||||||
|
kwargs={
|
||||||
|
"n_links": 5,
|
||||||
|
"random_start": False
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
## Viapoint Reacher
|
||||||
|
|
||||||
register(
|
register(
|
||||||
id='ViaPointReacher-v0',
|
id='ViaPointReacher-v0',
|
||||||
entry_point='alr_envs.classic_control.viapoint_reacher:ViaPointReacher',
|
entry_point='alr_envs.classic_control.viapoint_reacher:ViaPointReacher',
|
||||||
@ -168,27 +165,45 @@ register(
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
## Hole Reacher
|
||||||
register(
|
register(
|
||||||
id='HoleReacher-v0',
|
id='HoleReacher-v0',
|
||||||
entry_point='alr_envs.classic_control.hole_reacher:HoleReacher',
|
entry_point='alr_envs.classic_control.hole_reacher:HoleReacherEnv',
|
||||||
max_episode_steps=200,
|
max_episode_steps=200,
|
||||||
kwargs={
|
kwargs={
|
||||||
"n_links": 5,
|
"n_links": 5,
|
||||||
"allow_self_collision": False,
|
"allow_self_collision": False,
|
||||||
"allow_wall_collision": False,
|
"allow_wall_collision": False,
|
||||||
"hole_width": 0.25,
|
"hole_width": None,
|
||||||
"hole_depth": 1,
|
"hole_depth": 1,
|
||||||
"hole_x": 2,
|
"hole_x": None,
|
||||||
|
"collision_penalty": 100,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id='HoleReacher-v1',
|
||||||
|
entry_point='alr_envs.classic_control.hole_reacher:HoleReacherEnv',
|
||||||
|
max_episode_steps=200,
|
||||||
|
kwargs={
|
||||||
|
"n_links": 5,
|
||||||
|
"random_start": False,
|
||||||
|
"allow_self_collision": False,
|
||||||
|
"allow_wall_collision": False,
|
||||||
|
"hole_width": None,
|
||||||
|
"hole_depth": 1,
|
||||||
|
"hole_x": None,
|
||||||
"collision_penalty": 100,
|
"collision_penalty": 100,
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
register(
|
register(
|
||||||
id='HoleReacher-v2',
|
id='HoleReacher-v2',
|
||||||
entry_point='alr_envs.classic_control.hole_reacher_v2:HoleReacher',
|
entry_point='alr_envs.classic_control.hole_reacher:HoleReacherEnv',
|
||||||
max_episode_steps=200,
|
max_episode_steps=200,
|
||||||
kwargs={
|
kwargs={
|
||||||
"n_links": 5,
|
"n_links": 5,
|
||||||
|
"random_start": False,
|
||||||
"allow_self_collision": False,
|
"allow_self_collision": False,
|
||||||
"allow_wall_collision": False,
|
"allow_wall_collision": False,
|
||||||
"hole_width": 0.25,
|
"hole_width": 0.25,
|
||||||
@ -199,14 +214,16 @@ register(
|
|||||||
)
|
)
|
||||||
|
|
||||||
# MP environments
|
# MP environments
|
||||||
|
reacher_envs = ["SimpleReacher-v0", "SimpleReacher-v1", "LongSimpleReacher-v0", "LongSimpleReacher-v1"]
|
||||||
register(
|
for env in reacher_envs:
|
||||||
id='SimpleReacherDMP-v0',
|
name = env.split("-")
|
||||||
|
register(
|
||||||
|
id=f'{name[0]}DMP-{name[1]}',
|
||||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
|
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
|
||||||
# max_episode_steps=1,
|
# max_episode_steps=1,
|
||||||
kwargs={
|
kwargs={
|
||||||
"name": "alr_envs:EpisodicSimpleReacher-v0",
|
"name": f"alr_envs:{env}",
|
||||||
"num_dof": 2,
|
"num_dof": 2 if "long" not in env.lower() else 5 ,
|
||||||
"num_basis": 5,
|
"num_basis": 5,
|
||||||
"duration": 2,
|
"duration": 2,
|
||||||
"alpha_phase": 2,
|
"alpha_phase": 2,
|
||||||
@ -214,23 +231,7 @@ register(
|
|||||||
"policy_type": "velocity",
|
"policy_type": "velocity",
|
||||||
"weights_scale": 50,
|
"weights_scale": 50,
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
register(
|
|
||||||
id='SimpleReacherDMP-v1',
|
|
||||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
|
|
||||||
# max_episode_steps=1,
|
|
||||||
kwargs={
|
|
||||||
"name": "alr_envs:EpisodicSimpleReacher-v1",
|
|
||||||
"num_dof": 2,
|
|
||||||
"num_basis": 5,
|
|
||||||
"duration": 2,
|
|
||||||
"alpha_phase": 2,
|
|
||||||
"learn_goal": True,
|
|
||||||
"policy_type": "velocity",
|
|
||||||
"weights_scale": 50,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
register(
|
register(
|
||||||
id='ViaPointReacherDMP-v0',
|
id='ViaPointReacherDMP-v0',
|
||||||
@ -266,6 +267,24 @@ register(
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id='HoleReacherDMP-v1',
|
||||||
|
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
|
||||||
|
# max_episode_steps=1,
|
||||||
|
kwargs={
|
||||||
|
"name": "alr_envs:HoleReacher-v1",
|
||||||
|
"num_dof": 5,
|
||||||
|
"num_basis": 5,
|
||||||
|
"duration": 2,
|
||||||
|
"learn_goal": True,
|
||||||
|
"alpha_phase": 2,
|
||||||
|
"bandwidth_factor": 2,
|
||||||
|
"policy_type": "velocity",
|
||||||
|
"weights_scale": 50,
|
||||||
|
"goal_scale": 0.1
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
register(
|
register(
|
||||||
id='HoleReacherDMP-v2',
|
id='HoleReacherDMP-v2',
|
||||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
|
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
from alr_envs.classic_control.simple_reacher import SimpleReacherEnv
|
from alr_envs.classic_control.simple_reacher import SimpleReacherEnv
|
||||||
from alr_envs.classic_control.episodic_simple_reacher import EpisodicSimpleReacherEnv
|
from alr_envs.classic_control.episodic_simple_reacher import EpisodicSimpleReacherEnv
|
||||||
from alr_envs.classic_control.viapoint_reacher import ViaPointReacher
|
from alr_envs.classic_control.viapoint_reacher import ViaPointReacher
|
||||||
from alr_envs.classic_control.hole_reacher import HoleReacher
|
from alr_envs.classic_control.hole_reacher import HoleReacherEnv
|
||||||
|
@ -35,7 +35,7 @@ class EpisodicSimpleReacherEnv(SimpleReacherEnv):
|
|||||||
|
|
||||||
def _get_obs(self):
|
def _get_obs(self):
|
||||||
if self.random_start:
|
if self.random_start:
|
||||||
theta = self._joint_angle
|
theta = self._joint_angles
|
||||||
return np.hstack([
|
return np.hstack([
|
||||||
np.cos(theta),
|
np.cos(theta),
|
||||||
np.sin(theta),
|
np.sin(theta),
|
||||||
|
@ -1,27 +1,36 @@
|
|||||||
|
from typing import Union
|
||||||
|
|
||||||
import gym
|
import gym
|
||||||
import numpy as np
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
from gym.utils import seeding
|
||||||
from matplotlib import patches
|
from matplotlib import patches
|
||||||
|
|
||||||
from alr_envs.classic_control.utils import check_self_collision
|
from alr_envs.classic_control.utils import check_self_collision
|
||||||
|
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||||
|
|
||||||
|
|
||||||
class HoleReacher(gym.Env):
|
class HoleReacherEnv(MPEnv):
|
||||||
|
|
||||||
def __init__(self, n_links, hole_x, hole_width, hole_depth, allow_self_collision=False,
|
def __init__(self, n_links: int, hole_x: Union[None, float] = None, hole_depth: Union[None, float] = None,
|
||||||
allow_wall_collision=False, collision_penalty=1000):
|
hole_width: float = 1., random_start: bool = False, allow_self_collision: bool = False,
|
||||||
|
allow_wall_collision: bool = False, collision_penalty: bool = 1000):
|
||||||
|
|
||||||
self.n_links = n_links
|
self.n_links = n_links
|
||||||
self.link_lengths = np.ones((n_links, 1))
|
self.link_lengths = np.ones((n_links, 1))
|
||||||
|
|
||||||
# task
|
self.random_start = random_start
|
||||||
self.hole_x = hole_x # x-position of center of hole
|
|
||||||
self.hole_width = hole_width # width of hole
|
|
||||||
self.hole_depth = hole_depth # depth of hole
|
|
||||||
|
|
||||||
self.bottom_center_of_hole = np.hstack([hole_x, -hole_depth])
|
# provided initial parameters
|
||||||
self.top_center_of_hole = np.hstack([hole_x, 0])
|
self._hole_x = hole_x # x-position of center of hole
|
||||||
self.left_wall_edge = np.hstack([hole_x - self.hole_width / 2, 0])
|
self._hole_width = hole_width # width of hole
|
||||||
self.right_wall_edge = np.hstack([hole_x + self.hole_width / 2, 0])
|
self._hole_depth = hole_depth # depth of hole
|
||||||
|
|
||||||
|
# temp container for current env state
|
||||||
|
self._tmp_hole_x = None
|
||||||
|
self._tmp_hole_width = None
|
||||||
|
self._tmp_hole_depth = None
|
||||||
|
self._goal = None # x-y coordinates for reaching the center at the bottom of the hole
|
||||||
|
|
||||||
# collision
|
# collision
|
||||||
self.allow_self_collision = allow_self_collision
|
self.allow_self_collision = allow_self_collision
|
||||||
@ -32,95 +41,77 @@ class HoleReacher(gym.Env):
|
|||||||
self._joints = None
|
self._joints = None
|
||||||
self._joint_angles = None
|
self._joint_angles = None
|
||||||
self._angle_velocity = None
|
self._angle_velocity = None
|
||||||
self.start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
|
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
|
||||||
self.start_vel = np.zeros(self.n_links)
|
self._start_vel = np.zeros(self.n_links)
|
||||||
|
|
||||||
self.dt = 0.01
|
self.dt = 0.01
|
||||||
# self.time_limit = 2
|
|
||||||
|
|
||||||
action_bound = np.pi * np.ones((self.n_links,))
|
action_bound = np.pi * np.ones((self.n_links,))
|
||||||
state_bound = np.hstack([
|
state_bound = np.hstack([
|
||||||
[np.pi] * self.n_links, # cos
|
[np.pi] * self.n_links, # cos
|
||||||
[np.pi] * self.n_links, # sin
|
[np.pi] * self.n_links, # sin
|
||||||
[np.inf] * self.n_links, # velocity
|
[np.inf] * self.n_links, # velocity
|
||||||
|
[np.inf], # hole width
|
||||||
|
[np.inf], # hole depth
|
||||||
[np.inf] * 2, # x-y coordinates of target distance
|
[np.inf] * 2, # x-y coordinates of target distance
|
||||||
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
||||||
])
|
])
|
||||||
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||||
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||||
|
|
||||||
|
# containers for plotting
|
||||||
|
self.metadata = {'render.modes': ["human", "partial"]}
|
||||||
self.fig = None
|
self.fig = None
|
||||||
rect_1 = patches.Rectangle((-self.n_links, -1),
|
|
||||||
self.n_links + self.hole_x - self.hole_width / 2, 1,
|
|
||||||
fill=True, edgecolor='k', facecolor='k')
|
|
||||||
rect_2 = patches.Rectangle((self.hole_x + self.hole_width / 2, -1),
|
|
||||||
self.n_links - self.hole_x + self.hole_width / 2, 1,
|
|
||||||
fill=True, edgecolor='k', facecolor='k')
|
|
||||||
rect_3 = patches.Rectangle((self.hole_x - self.hole_width / 2, -1), self.hole_width,
|
|
||||||
1 - self.hole_depth,
|
|
||||||
fill=True, edgecolor='k', facecolor='k')
|
|
||||||
|
|
||||||
self.patches = [rect_1, rect_2, rect_3]
|
self._steps = 0
|
||||||
|
self.seed()
|
||||||
|
|
||||||
@property
|
def step(self, action: np.ndarray):
|
||||||
def init_qpos(self):
|
"""
|
||||||
return self.start_pos
|
A single step with an action in joint velocity space
|
||||||
|
"""
|
||||||
|
|
||||||
@property
|
self._angle_velocity = action
|
||||||
def end_effector(self):
|
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
||||||
return self._joints[self.n_links].T
|
self._update_joints()
|
||||||
|
|
||||||
def configure(self, context):
|
acc = (action - self._angle_velocity) / self.dt
|
||||||
pass
|
reward, info = self._get_reward(acc)
|
||||||
|
|
||||||
|
info.update({"is_collided": self._is_collided})
|
||||||
|
|
||||||
|
self._steps += 1
|
||||||
|
done = self._is_collided
|
||||||
|
|
||||||
|
return self._get_obs().copy(), reward, done, info
|
||||||
|
|
||||||
def reset(self):
|
def reset(self):
|
||||||
self._joint_angles = self.start_pos
|
if self.random_start:
|
||||||
self._angle_velocity = self.start_vel
|
# Maybe change more than dirst seed
|
||||||
|
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
|
||||||
|
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
|
||||||
|
self._start_pos = self._joint_angles.copy()
|
||||||
|
else:
|
||||||
|
self._joint_angles = self._start_pos
|
||||||
|
|
||||||
|
self._generate_hole()
|
||||||
|
self._set_patches()
|
||||||
|
|
||||||
|
self._angle_velocity = self._start_vel
|
||||||
self._joints = np.zeros((self.n_links + 1, 2))
|
self._joints = np.zeros((self.n_links + 1, 2))
|
||||||
self._update_joints()
|
self._update_joints()
|
||||||
self._steps = 0
|
self._steps = 0
|
||||||
|
|
||||||
return self._get_obs().copy()
|
return self._get_obs().copy()
|
||||||
|
|
||||||
def step(self, action: np.ndarray):
|
def _generate_hole(self):
|
||||||
"""
|
self._tmp_hole_x = self.np_random.uniform(0.5, 3.5, 1) if self._hole_x is None else np.copy(self._hole_x)
|
||||||
a single step with an action in joint velocity space
|
self._tmp_hole_width = self.np_random.uniform(0.5, 0.1, 1) if self._hole_width is None else np.copy(
|
||||||
"""
|
self._hole_width)
|
||||||
vel = action # + 0.05 * np.random.randn(self.n_links)
|
# TODO we do not want this right now.
|
||||||
acc = (vel - self._angle_velocity) / self.dt
|
self._tmp_hole_depth = self.np_random.uniform(1, 1, 1) if self._hole_depth is None else np.copy(
|
||||||
self._angle_velocity = vel
|
self._hole_depth)
|
||||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
self._goal = np.hstack([self._tmp_hole_x, -self._tmp_hole_depth])
|
||||||
|
|
||||||
self._update_joints()
|
|
||||||
|
|
||||||
# rew = self._reward()
|
|
||||||
|
|
||||||
# compute reward directly in step function
|
|
||||||
|
|
||||||
success = False
|
|
||||||
reward = 0
|
|
||||||
if not self._is_collided:
|
|
||||||
if self._steps == 199:
|
|
||||||
dist = np.linalg.norm(self.end_effector - self.bottom_center_of_hole)
|
|
||||||
reward = - dist ** 2
|
|
||||||
success = dist < 0.005
|
|
||||||
else:
|
|
||||||
dist = np.linalg.norm(self.end_effector - self.bottom_center_of_hole)
|
|
||||||
# if self.collision_penalty != 0:
|
|
||||||
# reward = -self.collision_penalty
|
|
||||||
# else:
|
|
||||||
reward = - dist ** 2 - self.collision_penalty
|
|
||||||
|
|
||||||
reward -= 5e-8 * np.sum(acc ** 2)
|
|
||||||
|
|
||||||
info = {"is_collided": self._is_collided, "is_success": success}
|
|
||||||
|
|
||||||
self._steps += 1
|
|
||||||
|
|
||||||
# done = self._steps * self.dt > self.time_limit or self._is_collided
|
|
||||||
done = self._is_collided
|
|
||||||
|
|
||||||
return self._get_obs().copy(), reward, done, info
|
|
||||||
|
|
||||||
def _update_joints(self):
|
def _update_joints(self):
|
||||||
"""
|
"""
|
||||||
@ -128,7 +119,7 @@ class HoleReacher(gym.Env):
|
|||||||
Returns:
|
Returns:
|
||||||
|
|
||||||
"""
|
"""
|
||||||
line_points_in_taskspace = self.get_forward_kinematics(num_points_per_link=20)
|
line_points_in_taskspace = self._get_forward_kinematics(num_points_per_link=20)
|
||||||
|
|
||||||
self._joints[1:, 0] = self._joints[0, 0] + line_points_in_taskspace[:, -1, 0]
|
self._joints[1:, 0] = self._joints[0, 0] + line_points_in_taskspace[:, -1, 0]
|
||||||
self._joints[1:, 1] = self._joints[0, 1] + line_points_in_taskspace[:, -1, 1]
|
self._joints[1:, 1] = self._joints[0, 1] + line_points_in_taskspace[:, -1, 1]
|
||||||
@ -142,48 +133,65 @@ class HoleReacher(gym.Env):
|
|||||||
self_collision = True
|
self_collision = True
|
||||||
|
|
||||||
if not self.allow_wall_collision:
|
if not self.allow_wall_collision:
|
||||||
wall_collision = self.check_wall_collision(line_points_in_taskspace)
|
wall_collision = self._check_wall_collision(line_points_in_taskspace)
|
||||||
|
|
||||||
self._is_collided = self_collision or wall_collision
|
self._is_collided = self_collision or wall_collision
|
||||||
|
|
||||||
|
def _get_reward(self, acc: np.ndarray):
|
||||||
|
success = False
|
||||||
|
reward = -np.inf
|
||||||
|
if not self._is_collided:
|
||||||
|
dist = 0
|
||||||
|
# return reward only in last time step
|
||||||
|
if self._steps == 199:
|
||||||
|
dist = np.linalg.norm(self.end_effector - self._goal)
|
||||||
|
success = dist < 0.005
|
||||||
|
else:
|
||||||
|
# Episode terminates when colliding, hence return reward
|
||||||
|
dist = np.linalg.norm(self.end_effector - self._goal)
|
||||||
|
reward = -self.collision_penalty
|
||||||
|
|
||||||
|
reward -= dist ** 2
|
||||||
|
reward -= 5e-8 * np.sum(acc ** 2)
|
||||||
|
info = {"is_success": success}
|
||||||
|
|
||||||
|
return reward, info
|
||||||
|
|
||||||
def _get_obs(self):
|
def _get_obs(self):
|
||||||
theta = self._joint_angles
|
theta = self._joint_angles
|
||||||
return np.hstack([
|
return np.hstack([
|
||||||
np.cos(theta),
|
np.cos(theta),
|
||||||
np.sin(theta),
|
np.sin(theta),
|
||||||
self._angle_velocity,
|
self._angle_velocity,
|
||||||
self.end_effector - self.bottom_center_of_hole,
|
self._tmp_hole_width,
|
||||||
|
self._tmp_hole_depth,
|
||||||
|
self.end_effector - self._goal,
|
||||||
self._steps
|
self._steps
|
||||||
])
|
])
|
||||||
|
|
||||||
def get_forward_kinematics(self, num_points_per_link=1):
|
def _get_forward_kinematics(self, num_points_per_link=1):
|
||||||
theta = self._joint_angles[:, None]
|
theta = self._joint_angles[:, None]
|
||||||
|
|
||||||
if num_points_per_link > 1:
|
intermediate_points = np.linspace(0, 1, num_points_per_link) if num_points_per_link > 1 else 1
|
||||||
intermediate_points = np.linspace(0, 1, num_points_per_link)
|
|
||||||
else:
|
|
||||||
intermediate_points = 1
|
|
||||||
|
|
||||||
accumulated_theta = np.cumsum(theta, axis=0)
|
accumulated_theta = np.cumsum(theta, axis=0)
|
||||||
|
end_effector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
|
||||||
endeffector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
|
|
||||||
|
|
||||||
x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
|
x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
|
||||||
y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
|
y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
|
||||||
|
|
||||||
endeffector[0, :, 0] = x[0, :]
|
end_effector[0, :, 0] = x[0, :]
|
||||||
endeffector[0, :, 1] = y[0, :]
|
end_effector[0, :, 1] = y[0, :]
|
||||||
|
|
||||||
for i in range(1, self.n_links):
|
for i in range(1, self.n_links):
|
||||||
endeffector[i, :, 0] = x[i, :] + endeffector[i - 1, -1, 0]
|
end_effector[i, :, 0] = x[i, :] + end_effector[i - 1, -1, 0]
|
||||||
endeffector[i, :, 1] = y[i, :] + endeffector[i - 1, -1, 1]
|
end_effector[i, :, 1] = y[i, :] + end_effector[i - 1, -1, 1]
|
||||||
|
|
||||||
return np.squeeze(endeffector + self._joints[0, :])
|
return np.squeeze(end_effector + self._joints[0, :])
|
||||||
|
|
||||||
def check_wall_collision(self, line_points):
|
def _check_wall_collision(self, line_points):
|
||||||
|
|
||||||
# all points that are before the hole in x
|
# all points that are before the hole in x
|
||||||
r, c = np.where(line_points[:, :, 0] < (self.hole_x - self.hole_width / 2))
|
r, c = np.where(line_points[:, :, 0] < (self._tmp_hole_x - self._tmp_hole_width / 2))
|
||||||
|
|
||||||
# check if any of those points are below surface
|
# check if any of those points are below surface
|
||||||
nr_line_points_below_surface_before_hole = np.sum(line_points[r, c, 1] < 0)
|
nr_line_points_below_surface_before_hole = np.sum(line_points[r, c, 1] < 0)
|
||||||
@ -192,7 +200,7 @@ class HoleReacher(gym.Env):
|
|||||||
return True
|
return True
|
||||||
|
|
||||||
# all points that are after the hole in x
|
# all points that are after the hole in x
|
||||||
r, c = np.where(line_points[:, :, 0] > (self.hole_x + self.hole_width / 2))
|
r, c = np.where(line_points[:, :, 0] > (self._tmp_hole_x + self._tmp_hole_width / 2))
|
||||||
|
|
||||||
# check if any of those points are below surface
|
# check if any of those points are below surface
|
||||||
nr_line_points_below_surface_after_hole = np.sum(line_points[r, c, 1] < 0)
|
nr_line_points_below_surface_after_hole = np.sum(line_points[r, c, 1] < 0)
|
||||||
@ -201,11 +209,11 @@ class HoleReacher(gym.Env):
|
|||||||
return True
|
return True
|
||||||
|
|
||||||
# all points that are above the hole
|
# all points that are above the hole
|
||||||
r, c = np.where((line_points[:, :, 0] > (self.hole_x - self.hole_width / 2)) & (
|
r, c = np.where((line_points[:, :, 0] > (self._tmp_hole_x - self._tmp_hole_width / 2)) & (
|
||||||
line_points[:, :, 0] < (self.hole_x + self.hole_width / 2)))
|
line_points[:, :, 0] < (self._tmp_hole_x + self._tmp_hole_width / 2)))
|
||||||
|
|
||||||
# check if any of those points are below surface
|
# check if any of those points are below surface
|
||||||
nr_line_points_below_surface_in_hole = np.sum(line_points[r, c, 1] < -self.hole_depth)
|
nr_line_points_below_surface_in_hole = np.sum(line_points[r, c, 1] < -self._tmp_hole_depth)
|
||||||
|
|
||||||
if nr_line_points_below_surface_in_hole > 0:
|
if nr_line_points_below_surface_in_hole > 0:
|
||||||
return True
|
return True
|
||||||
@ -214,64 +222,85 @@ class HoleReacher(gym.Env):
|
|||||||
|
|
||||||
def render(self, mode='human'):
|
def render(self, mode='human'):
|
||||||
if self.fig is None:
|
if self.fig is None:
|
||||||
|
# Create base figure once on the beginning. Afterwards only update
|
||||||
|
plt.ion()
|
||||||
self.fig = plt.figure()
|
self.fig = plt.figure()
|
||||||
# plt.ion()
|
ax = self.fig.add_subplot(1, 1, 1)
|
||||||
# plt.pause(0.01)
|
|
||||||
else:
|
# limits
|
||||||
plt.figure(self.fig.number)
|
lim = np.sum(self.link_lengths) + 0.5
|
||||||
|
ax.set_xlim([-lim, lim])
|
||||||
|
ax.set_ylim([-1.1, lim])
|
||||||
|
|
||||||
|
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||||
|
self._set_patches()
|
||||||
|
self.fig.show()
|
||||||
|
|
||||||
|
self.fig.gca().set_title(
|
||||||
|
f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
|
||||||
|
|
||||||
if mode == "human":
|
if mode == "human":
|
||||||
plt.cla()
|
|
||||||
plt.title(f"Iteration: {self._steps}, distance: {self.end_effector - self.bottom_center_of_hole}")
|
|
||||||
|
|
||||||
# Arm
|
# arm
|
||||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
self.line.set_data(self._joints[:, 0], self._joints[:, 1])
|
||||||
|
|
||||||
# Add the patch to the Axes
|
self.fig.canvas.draw()
|
||||||
[plt.gca().add_patch(rect) for rect in self.patches]
|
self.fig.canvas.flush_events()
|
||||||
|
|
||||||
lim = np.sum(self.link_lengths) + 0.5
|
|
||||||
plt.xlim([-lim, lim])
|
|
||||||
plt.ylim([-1.1, lim])
|
|
||||||
# plt.draw()
|
|
||||||
plt.pause(1e-4) # pushes window to foreground, which is annoying.
|
|
||||||
# self.fig.canvas.flush_events()
|
|
||||||
|
|
||||||
elif mode == "partial":
|
elif mode == "partial":
|
||||||
if self._steps == 1:
|
|
||||||
# fig, ax = plt.subplots()
|
|
||||||
# Add the patch to the Axes
|
|
||||||
try:
|
|
||||||
[plt.gca().add_patch(rect) for rect in self.patches]
|
|
||||||
except RuntimeError:
|
|
||||||
pass
|
|
||||||
# plt.pause(0.01)
|
|
||||||
|
|
||||||
if self._steps % 20 == 0 or self._steps in [1, 199] or self._is_collided:
|
if self._steps % 20 == 0 or self._steps in [1, 199] or self._is_collided:
|
||||||
# Arm
|
# Arm
|
||||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k', alpha=self._steps / 200)
|
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k',
|
||||||
# ax.plot(line_points_in_taskspace[:, 0, 0],
|
alpha=self._steps / 200)
|
||||||
# line_points_in_taskspace[:, 0, 1],
|
|
||||||
# line_points_in_taskspace[:, -1, 0],
|
|
||||||
# line_points_in_taskspace[:, -1, 1], marker='o', color='k', alpha=t / 200)
|
|
||||||
|
|
||||||
lim = np.sum(self.link_lengths) + 0.5
|
def _set_patches(self):
|
||||||
plt.xlim([-lim, lim])
|
if self.fig is not None:
|
||||||
plt.ylim([-1.1, lim])
|
self.fig.gca().patches = []
|
||||||
plt.pause(0.01)
|
left_block = patches.Rectangle((-self.n_links, -self._tmp_hole_depth),
|
||||||
|
self.n_links + self._tmp_hole_x - self._tmp_hole_width / 2,
|
||||||
elif mode == "final":
|
self._tmp_hole_depth,
|
||||||
if self._steps == 199 or self._is_collided:
|
fill=True, edgecolor='k', facecolor='k')
|
||||||
# fig, ax = plt.subplots()
|
right_block = patches.Rectangle((self._tmp_hole_x + self._tmp_hole_width / 2, -self._tmp_hole_depth),
|
||||||
|
self.n_links - self._tmp_hole_x + self._tmp_hole_width / 2,
|
||||||
|
self._tmp_hole_depth,
|
||||||
|
fill=True, edgecolor='k', facecolor='k')
|
||||||
|
hole_floor = patches.Rectangle((self._tmp_hole_x - self._tmp_hole_width / 2, -self._tmp_hole_depth),
|
||||||
|
self._tmp_hole_width,
|
||||||
|
1 - self._tmp_hole_depth,
|
||||||
|
fill=True, edgecolor='k', facecolor='k')
|
||||||
|
|
||||||
# Add the patch to the Axes
|
# Add the patch to the Axes
|
||||||
[plt.gca().add_patch(rect) for rect in self.patches]
|
self.fig.gca().add_patch(left_block)
|
||||||
|
self.fig.gca().add_patch(right_block)
|
||||||
|
self.fig.gca().add_patch(hole_floor)
|
||||||
|
|
||||||
plt.xlim(-self.n_links, self.n_links), plt.ylim(-1, self.n_links)
|
@property
|
||||||
# Arm
|
def active_obs(self):
|
||||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
return np.hstack([
|
||||||
|
[self.random_start] * self.n_links, # cos
|
||||||
|
[self.random_start] * self.n_links, # sin
|
||||||
|
[self.random_start] * self.n_links, # velocity
|
||||||
|
[self._hole_width is None], # hole width
|
||||||
|
[self._hole_depth is None], # hole width
|
||||||
|
[True] * 2, # x-y coordinates of target distance
|
||||||
|
[False] # env steps
|
||||||
|
])
|
||||||
|
|
||||||
plt.pause(0.01)
|
@property
|
||||||
|
def start_pos(self) -> Union[float, int, np.ndarray]:
|
||||||
|
return self._start_pos
|
||||||
|
|
||||||
|
@property
|
||||||
|
def goal_pos(self) -> Union[float, int, np.ndarray]:
|
||||||
|
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
|
||||||
|
|
||||||
|
def seed(self, seed=None):
|
||||||
|
self.np_random, seed = seeding.np_random(seed)
|
||||||
|
return [seed]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def end_effector(self):
|
||||||
|
return self._joints[self.n_links].T
|
||||||
|
|
||||||
def close(self):
|
def close(self):
|
||||||
if self.fig is not None:
|
if self.fig is not None:
|
||||||
@ -281,22 +310,20 @@ class HoleReacher(gym.Env):
|
|||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
nl = 5
|
nl = 5
|
||||||
render_mode = "human" # "human" or "partial" or "final"
|
render_mode = "human" # "human" or "partial" or "final"
|
||||||
env = HoleReacher(n_links=nl, allow_self_collision=False, allow_wall_collision=False, hole_width=0.15,
|
env = HoleReacherEnv(n_links=nl, allow_self_collision=False, allow_wall_collision=False, hole_width=None,
|
||||||
hole_depth=1, hole_x=1)
|
hole_depth=1, hole_x=None)
|
||||||
env.reset()
|
obs = env.reset()
|
||||||
# env.render(mode=render_mode)
|
|
||||||
|
|
||||||
for i in range(200):
|
for i in range(200):
|
||||||
# objective.load_result("/tmp/cma")
|
# objective.load_result("/tmp/cma")
|
||||||
# test with random actions
|
# test with random actions
|
||||||
ac = 2 * env.action_space.sample()
|
ac = 2 * env.action_space.sample()
|
||||||
# ac[0] += np.pi/2
|
|
||||||
obs, rew, d, info = env.step(ac)
|
obs, rew, d, info = env.step(ac)
|
||||||
env.render(mode=render_mode)
|
env.render(mode=render_mode)
|
||||||
|
|
||||||
print(rew)
|
print(rew)
|
||||||
|
|
||||||
if d:
|
if d:
|
||||||
break
|
env.reset()
|
||||||
|
|
||||||
env.close()
|
env.close()
|
||||||
|
@ -1,42 +1,41 @@
|
|||||||
import gym
|
from typing import Iterable, Union
|
||||||
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from gym import spaces
|
from gym import spaces
|
||||||
from gym.utils import seeding
|
from gym.utils import seeding
|
||||||
|
|
||||||
from alr_envs.utils.utils import angle_normalize
|
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||||
|
|
||||||
|
|
||||||
# if os.environ.get("DISPLAY", None):
|
class SimpleReacherEnv(MPEnv):
|
||||||
# mpl.use('Qt5Agg')
|
|
||||||
|
|
||||||
|
|
||||||
class SimpleReacherEnv(gym.Env):
|
|
||||||
"""
|
"""
|
||||||
Simple Reaching Task without any physics simulation.
|
Simple Reaching Task without any physics simulation.
|
||||||
Returns no reward until 150 time steps. This allows the agent to explore the space, but requires precise actions
|
Returns no reward until 150 time steps. This allows the agent to explore the space, but requires precise actions
|
||||||
towards the end of the trajectory.
|
towards the end of the trajectory.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, n_links, random_start=True):
|
def __init__(self, n_links: int, target: Union[None, Iterable] = None, random_start: bool = True):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.link_lengths = np.ones(n_links)
|
self.link_lengths = np.ones(n_links)
|
||||||
self.n_links = n_links
|
self.n_links = n_links
|
||||||
self.dt = 0.01
|
self.dt = 0.1
|
||||||
|
|
||||||
self.random_start = random_start
|
self.random_start = random_start
|
||||||
|
|
||||||
self._goal = None
|
|
||||||
|
|
||||||
self._joints = None
|
self._joints = None
|
||||||
self._joint_angle = None
|
self._joint_angles = None
|
||||||
self._angle_velocity = None
|
self._angle_velocity = None
|
||||||
self._start_pos = None
|
self._start_pos = np.zeros(self.n_links)
|
||||||
|
self._start_vel = np.zeros(self.n_links)
|
||||||
|
|
||||||
self.max_torque = 1 # 10
|
self._target = target # provided target value
|
||||||
|
self._goal = None # updated goal value, does not change when target != None
|
||||||
|
|
||||||
|
self.max_torque = 1
|
||||||
self.steps_before_reward = 199
|
self.steps_before_reward = 199
|
||||||
|
|
||||||
action_bound = np.ones((self.n_links,))
|
action_bound = np.ones((self.n_links,)) * self.max_torque
|
||||||
state_bound = np.hstack([
|
state_bound = np.hstack([
|
||||||
[np.pi] * self.n_links, # cos
|
[np.pi] * self.n_links, # cos
|
||||||
[np.pi] * self.n_links, # sin
|
[np.pi] * self.n_links, # sin
|
||||||
@ -47,45 +46,76 @@ class SimpleReacherEnv(gym.Env):
|
|||||||
self.action_space = spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
self.action_space = spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||||
self.observation_space = spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
self.observation_space = spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||||
|
|
||||||
self.fig = None
|
# containers for plotting
|
||||||
self.metadata = {'render.modes': ["human"]}
|
self.metadata = {'render.modes': ["human"]}
|
||||||
|
self.fig = None
|
||||||
|
|
||||||
self._steps = 0
|
self._steps = 0
|
||||||
self.seed()
|
self.seed()
|
||||||
|
|
||||||
def step(self, action: np.ndarray):
|
def step(self, action: np.ndarray):
|
||||||
|
"""
|
||||||
|
A single step with action in torque space
|
||||||
|
"""
|
||||||
|
|
||||||
# action = self._add_action_noise(action)
|
# action = self._add_action_noise(action)
|
||||||
# action = np.clip(action, -self.max_torque, self.max_torque)
|
ac = np.clip(action, -self.max_torque, self.max_torque)
|
||||||
vel = action
|
|
||||||
|
|
||||||
# self._angle_velocity = self._angle_velocity + self.dt * action
|
self._angle_velocity = self._angle_velocity + self.dt * ac
|
||||||
# self._joint_angle = angle_normalize(self._joint_angle + self.dt * self._angle_velocity)
|
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
||||||
self._angle_velocity = vel
|
|
||||||
self._joint_angle = self._joint_angle + self.dt * self._angle_velocity
|
|
||||||
self._update_joints()
|
self._update_joints()
|
||||||
self._steps += 1
|
|
||||||
|
|
||||||
reward, info = self._get_reward(action)
|
reward, info = self._get_reward(action)
|
||||||
|
|
||||||
# done = np.abs(self.end_effector - self._goal_pos) < 0.1
|
self._steps += 1
|
||||||
done = False
|
done = False
|
||||||
|
|
||||||
return self._get_obs().copy(), reward, done, info
|
return self._get_obs().copy(), reward, done, info
|
||||||
|
|
||||||
def _add_action_noise(self, action: np.ndarray):
|
def reset(self):
|
||||||
"""
|
|
||||||
add unobserved Gaussian Noise N(0,0.01) to the actions
|
|
||||||
Args:
|
|
||||||
action:
|
|
||||||
|
|
||||||
Returns: actions with noise
|
# TODO: maybe do initialisation more random?
|
||||||
|
# Sample only orientation of first link, i.e. the arm is always straight.
|
||||||
|
if self.random_start:
|
||||||
|
self._joint_angles = np.hstack([[self.np_random.uniform(-np.pi, np.pi)], np.zeros(self.n_links - 1)])
|
||||||
|
self._start_pos = self._joint_angles.copy()
|
||||||
|
else:
|
||||||
|
self._joint_angles = self._start_pos
|
||||||
|
|
||||||
|
self._generate_goal()
|
||||||
|
|
||||||
|
self._angle_velocity = self._start_vel
|
||||||
|
self._joints = np.zeros((self.n_links + 1, 2))
|
||||||
|
self._update_joints()
|
||||||
|
self._steps = 0
|
||||||
|
|
||||||
|
return self._get_obs().copy()
|
||||||
|
|
||||||
|
def _update_joints(self):
|
||||||
|
"""
|
||||||
|
update joints to get new end-effector position. The other links are only required for rendering.
|
||||||
|
Returns:
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return self.np_random.normal(0, 0.1, *action.shape) + action
|
angles = np.cumsum(self._joint_angles)
|
||||||
|
x = self.link_lengths * np.vstack([np.cos(angles), np.sin(angles)])
|
||||||
|
self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0)
|
||||||
|
|
||||||
|
def _get_reward(self, action: np.ndarray):
|
||||||
|
diff = self.end_effector - self._goal
|
||||||
|
reward_dist = 0
|
||||||
|
|
||||||
|
if self._steps >= self.steps_before_reward:
|
||||||
|
reward_dist -= np.linalg.norm(diff)
|
||||||
|
# reward_dist = np.exp(-0.1 * diff ** 2).mean()
|
||||||
|
# reward_dist = - (diff ** 2).mean()
|
||||||
|
|
||||||
|
reward_ctrl = (action ** 2).sum()
|
||||||
|
reward = reward_dist - reward_ctrl
|
||||||
|
return reward, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl)
|
||||||
|
|
||||||
def _get_obs(self):
|
def _get_obs(self):
|
||||||
theta = self._joint_angle
|
theta = self._joint_angles
|
||||||
return np.hstack([
|
return np.hstack([
|
||||||
np.cos(theta),
|
np.cos(theta),
|
||||||
np.sin(theta),
|
np.sin(theta),
|
||||||
@ -94,91 +124,108 @@ class SimpleReacherEnv(gym.Env):
|
|||||||
self._steps
|
self._steps
|
||||||
])
|
])
|
||||||
|
|
||||||
def _update_joints(self):
|
def _generate_goal(self):
|
||||||
"""
|
|
||||||
update joints to get new end-effector position. The other links are only required for rendering.
|
|
||||||
Returns:
|
|
||||||
|
|
||||||
"""
|
if self._target is None:
|
||||||
angles = np.cumsum(self._joint_angle)
|
# center = self._joints[0]
|
||||||
x = self.link_lengths * np.vstack([np.cos(angles), np.sin(angles)])
|
# # Sample uniformly in circle with radius R around center of reacher.
|
||||||
self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0)
|
# R = np.sum(self.link_lengths)
|
||||||
|
# r = R * np.sqrt(self.np_random.uniform())
|
||||||
|
# theta = self.np_random.uniform() * 2 * np.pi
|
||||||
|
# goal = center + r * np.stack([np.cos(theta), np.sin(theta)])
|
||||||
|
|
||||||
def _get_reward(self, action: np.ndarray):
|
total_length = np.sum(self.link_lengths)
|
||||||
diff = self.end_effector - self._goal
|
goal = np.array([total_length, total_length])
|
||||||
reward_dist = 0
|
while np.linalg.norm(goal) >= total_length:
|
||||||
|
goal = self.np_random.uniform(low=-total_length, high=total_length, size=2)
|
||||||
# TODO: Is this the best option
|
|
||||||
if self._steps >= self.steps_before_reward:
|
|
||||||
reward_dist -= np.linalg.norm(diff)
|
|
||||||
# reward_dist = np.exp(-0.1 * diff ** 2).mean()
|
|
||||||
# reward_dist = - (diff ** 2).mean()
|
|
||||||
|
|
||||||
reward_ctrl = 1e-5 * (action ** 2).sum()
|
|
||||||
reward = reward_dist - reward_ctrl
|
|
||||||
return reward, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl)
|
|
||||||
|
|
||||||
def reset(self):
|
|
||||||
|
|
||||||
# TODO: maybe do initialisation more random?
|
|
||||||
# Sample only orientation of first link, i.e. the arm is always straight.
|
|
||||||
if self.random_start:
|
|
||||||
self._joint_angle = np.hstack([[self.np_random.uniform(-np.pi, np.pi)], np.zeros(self.n_links - 1)])
|
|
||||||
else:
|
else:
|
||||||
self._joint_angle = np.zeros(self.n_links)
|
goal = np.copy(self._target)
|
||||||
|
|
||||||
self._start_pos = self._joint_angle
|
self._goal = goal
|
||||||
self._angle_velocity = np.zeros(self.n_links)
|
|
||||||
self._joints = np.zeros((self.n_links + 1, 2))
|
|
||||||
self._update_joints()
|
|
||||||
self._steps = 0
|
|
||||||
|
|
||||||
self._goal = self._get_random_goal()
|
def render(self, mode='human'): # pragma: no cover
|
||||||
return self._get_obs().copy()
|
if self.fig is None:
|
||||||
|
# Create base figure once on the beginning. Afterwards only update
|
||||||
|
plt.ion()
|
||||||
|
self.fig = plt.figure()
|
||||||
|
ax = self.fig.add_subplot(1, 1, 1)
|
||||||
|
|
||||||
def _get_random_goal(self):
|
# limits
|
||||||
center = self._joints[0]
|
lim = np.sum(self.link_lengths) + 0.5
|
||||||
|
ax.set_xlim([-lim, lim])
|
||||||
|
ax.set_ylim([-lim, lim])
|
||||||
|
|
||||||
# Sample uniformly in circle with radius R around center of reacher.
|
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||||
R = np.sum(self.link_lengths)
|
goal_pos = self._goal.T
|
||||||
r = R * np.sqrt(self.np_random.uniform())
|
self.goal_point, = ax.plot(goal_pos[0], goal_pos[1], 'gx')
|
||||||
theta = np.pi/2 + 0.001 * np.random.randn() # self.np_random.uniform() * 2 * np.pi
|
self.goal_dist, = ax.plot([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]], 'g--')
|
||||||
return center + r * np.stack([np.cos(theta), np.sin(theta)])
|
|
||||||
|
self.fig.show()
|
||||||
|
|
||||||
|
self.fig.gca().set_title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
|
||||||
|
|
||||||
|
# goal
|
||||||
|
goal_pos = self._goal.T
|
||||||
|
if self._steps == 1:
|
||||||
|
self.goal_point.set_data(goal_pos[0], goal_pos[1])
|
||||||
|
|
||||||
|
# arm
|
||||||
|
self.line.set_data(self._joints[:, 0], self._joints[:, 1])
|
||||||
|
|
||||||
|
# distance between end effector and goal
|
||||||
|
self.goal_dist.set_data([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]])
|
||||||
|
|
||||||
|
self.fig.canvas.draw()
|
||||||
|
self.fig.canvas.flush_events()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def active_obs(self):
|
||||||
|
return np.hstack([
|
||||||
|
[self.random_start] * self.n_links, # cos
|
||||||
|
[self.random_start] * self.n_links, # sin
|
||||||
|
[self.random_start] * self.n_links, # velocity
|
||||||
|
[True] * 2, # x-y coordinates of target distance
|
||||||
|
[False] # env steps
|
||||||
|
])
|
||||||
|
|
||||||
|
@property
|
||||||
|
def start_pos(self):
|
||||||
|
return self._start_pos
|
||||||
|
|
||||||
|
@property
|
||||||
|
def goal_pos(self):
|
||||||
|
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
|
||||||
|
|
||||||
def seed(self, seed=None):
|
def seed(self, seed=None):
|
||||||
self.np_random, seed = seeding.np_random(seed)
|
self.np_random, seed = seeding.np_random(seed)
|
||||||
return [seed]
|
return [seed]
|
||||||
|
|
||||||
def render(self, mode='human'): # pragma: no cover
|
|
||||||
if self.fig is None:
|
|
||||||
self.fig = plt.figure()
|
|
||||||
plt.ion()
|
|
||||||
plt.show()
|
|
||||||
else:
|
|
||||||
plt.figure(self.fig.number)
|
|
||||||
|
|
||||||
plt.cla()
|
|
||||||
plt.title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
|
|
||||||
|
|
||||||
# Arm
|
|
||||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
|
||||||
|
|
||||||
# goal
|
|
||||||
goal_pos = self._goal.T
|
|
||||||
plt.plot(goal_pos[0], goal_pos[1], 'gx')
|
|
||||||
# distance between end effector and goal
|
|
||||||
plt.plot([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]], 'g--')
|
|
||||||
|
|
||||||
lim = np.sum(self.link_lengths) + 0.5
|
|
||||||
plt.xlim([-lim, lim])
|
|
||||||
plt.ylim([-lim, lim])
|
|
||||||
# plt.draw()
|
|
||||||
plt.pause(1e-4) # pushes window to foreground, which is annoying.
|
|
||||||
# self.fig.canvas.flush_events()
|
|
||||||
|
|
||||||
def close(self):
|
def close(self):
|
||||||
del self.fig
|
del self.fig
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def end_effector(self):
|
def end_effector(self):
|
||||||
return self._joints[self.n_links].T
|
return self._joints[self.n_links].T
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
nl = 5
|
||||||
|
render_mode = "human" # "human" or "partial" or "final"
|
||||||
|
env = SimpleReacherEnv(n_links=nl)
|
||||||
|
obs = env.reset()
|
||||||
|
print("First", obs)
|
||||||
|
|
||||||
|
for i in range(2000):
|
||||||
|
# objective.load_result("/tmp/cma")
|
||||||
|
# test with random actions
|
||||||
|
ac = 2 * env.action_space.sample()
|
||||||
|
# ac = np.ones(env.action_space.shape)
|
||||||
|
obs, rew, d, info = env.step(ac)
|
||||||
|
env.render(mode=render_mode)
|
||||||
|
|
||||||
|
print(obs[env.active_obs].shape)
|
||||||
|
|
||||||
|
if d or i % 200 == 0:
|
||||||
|
env.reset()
|
||||||
|
|
||||||
|
env.close()
|
||||||
|
@ -1,19 +1,31 @@
|
|||||||
|
from typing import Iterable, Union
|
||||||
|
|
||||||
import gym
|
import gym
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from gym.utils import seeding
|
||||||
|
|
||||||
from alr_envs.classic_control.utils import check_self_collision
|
from alr_envs.classic_control.utils import check_self_collision
|
||||||
|
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||||
|
|
||||||
|
|
||||||
class ViaPointReacher(gym.Env):
|
class ViaPointReacher(MPEnv):
|
||||||
|
|
||||||
def __init__(self, n_links, allow_self_collision=False, collision_penalty=1000):
|
def __init__(self, n_links, random_start: bool = True, via_target: Union[None, Iterable] = None,
|
||||||
self.num_links = n_links
|
target: Union[None, Iterable] = None, allow_self_collision=False, collision_penalty=1000):
|
||||||
|
|
||||||
|
self.n_links = n_links
|
||||||
self.link_lengths = np.ones((n_links, 1))
|
self.link_lengths = np.ones((n_links, 1))
|
||||||
|
|
||||||
# task
|
self.random_start = random_start
|
||||||
self.via_point = np.ones(2)
|
|
||||||
self.goal_point = np.array((n_links, 0))
|
# provided initial parameters
|
||||||
|
self._target = target # provided target value
|
||||||
|
self._via_target = via_target # provided via point target value
|
||||||
|
|
||||||
|
# temp container for current env state
|
||||||
|
self._via_point = np.ones(2)
|
||||||
|
self._goal = np.array((n_links, 0))
|
||||||
|
|
||||||
# collision
|
# collision
|
||||||
self.allow_self_collision = allow_self_collision
|
self.allow_self_collision = allow_self_collision
|
||||||
@ -23,78 +35,74 @@ class ViaPointReacher(gym.Env):
|
|||||||
self._joints = None
|
self._joints = None
|
||||||
self._joint_angles = None
|
self._joint_angles = None
|
||||||
self._angle_velocity = None
|
self._angle_velocity = None
|
||||||
self.start_pos = np.hstack([[np.pi / 2], np.zeros(self.num_links - 1)])
|
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
|
||||||
self.start_vel = np.zeros(self.num_links)
|
self._start_vel = np.zeros(self.n_links)
|
||||||
self.weight_matrix_scale = 1
|
self.weight_matrix_scale = 1
|
||||||
|
|
||||||
self._steps = 0
|
|
||||||
self.dt = 0.01
|
self.dt = 0.01
|
||||||
# self.time_limit = 2
|
|
||||||
|
|
||||||
action_bound = np.pi * np.ones((self.num_links,))
|
action_bound = np.pi * np.ones((self.n_links,))
|
||||||
state_bound = np.hstack([
|
state_bound = np.hstack([
|
||||||
[np.pi] * self.num_links, # cos
|
[np.pi] * self.n_links, # cos
|
||||||
[np.pi] * self.num_links, # sin
|
[np.pi] * self.n_links, # sin
|
||||||
[np.inf] * self.num_links, # velocity
|
[np.inf] * self.n_links, # velocity
|
||||||
|
[np.inf] * 2, # x-y coordinates of via point distance
|
||||||
[np.inf] * 2, # x-y coordinates of target distance
|
[np.inf] * 2, # x-y coordinates of target distance
|
||||||
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
[np.inf] # env steps, because reward start after n steps
|
||||||
])
|
])
|
||||||
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||||
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||||
|
|
||||||
|
# containers for plotting
|
||||||
|
self.metadata = {'render.modes': ["human", "partial"]}
|
||||||
self.fig = None
|
self.fig = None
|
||||||
|
|
||||||
@property
|
|
||||||
def end_effector(self):
|
|
||||||
return self._joints[self.num_links].T
|
|
||||||
|
|
||||||
def configure(self, context):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def reset(self):
|
|
||||||
self._joint_angles = self.start_pos
|
|
||||||
self._angle_velocity = self.start_vel
|
|
||||||
self._joints = np.zeros((self.num_links + 1, 2))
|
|
||||||
self._update_joints()
|
|
||||||
self._steps = 0
|
self._steps = 0
|
||||||
|
self.seed()
|
||||||
return self._get_obs().copy()
|
|
||||||
|
|
||||||
def step(self, action: np.ndarray):
|
def step(self, action: np.ndarray):
|
||||||
"""
|
"""
|
||||||
a single step with an action in joint velocity space
|
a single step with an action in joint velocity space
|
||||||
"""
|
"""
|
||||||
vel = action
|
vel = action
|
||||||
acc = (vel - self._angle_velocity) / self.dt
|
|
||||||
self._angle_velocity = vel
|
self._angle_velocity = vel
|
||||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
||||||
|
|
||||||
self._update_joints()
|
self._update_joints()
|
||||||
|
|
||||||
dist_reward = 0
|
acc = (vel - self._angle_velocity) / self.dt
|
||||||
if not self._is_collided:
|
reward, info = self._get_reward(acc)
|
||||||
if self._steps == 100:
|
|
||||||
dist_reward = np.linalg.norm(self.end_effector - self.via_point)
|
|
||||||
elif self._steps == 199:
|
|
||||||
dist_reward = np.linalg.norm(self.end_effector - self.goal_point)
|
|
||||||
|
|
||||||
# TODO: Do we need that?
|
info.update({"is_collided": self._is_collided})
|
||||||
reward = - dist_reward ** 2
|
|
||||||
|
|
||||||
reward -= 5e-8 * np.sum(acc**2)
|
|
||||||
|
|
||||||
if self._is_collided:
|
|
||||||
reward -= self.collision_penalty
|
|
||||||
|
|
||||||
info = {"is_collided": self._is_collided}
|
|
||||||
|
|
||||||
self._steps += 1
|
self._steps += 1
|
||||||
|
|
||||||
# done = self._steps * self.dt > self.time_limit or self._is_collided
|
|
||||||
done = self._is_collided
|
done = self._is_collided
|
||||||
|
|
||||||
return self._get_obs().copy(), reward, done, info
|
return self._get_obs().copy(), reward, done, info
|
||||||
|
|
||||||
|
def reset(self):
|
||||||
|
|
||||||
|
if self.random_start:
|
||||||
|
# Maybe change more than dirst seed
|
||||||
|
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
|
||||||
|
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
|
||||||
|
self._start_pos = self._joint_angles.copy()
|
||||||
|
else:
|
||||||
|
self._joint_angles = self._start_pos
|
||||||
|
|
||||||
|
self._generate_goal()
|
||||||
|
|
||||||
|
self._angle_velocity = self._start_vel
|
||||||
|
self._joints = np.zeros((self.n_links + 1, 2))
|
||||||
|
self._update_joints()
|
||||||
|
self._steps = 0
|
||||||
|
|
||||||
|
return self._get_obs().copy()
|
||||||
|
|
||||||
|
def _generate_goal(self):
|
||||||
|
self._via_point = self.np_random.uniform(0.5, 3.5, 2) if self._via_target is None else np.copy(self._via_target)
|
||||||
|
self._goal = self.np_random.uniform(0.5, 0.1, 2) if self._target is None else np.copy(self._target)
|
||||||
|
# raise NotImplementedError("How to properly sample points??")
|
||||||
|
|
||||||
def _update_joints(self):
|
def _update_joints(self):
|
||||||
"""
|
"""
|
||||||
update _joints to get new end effector position. The other links are only required for rendering.
|
update _joints to get new end effector position. The other links are only required for rendering.
|
||||||
@ -115,14 +123,38 @@ class ViaPointReacher(gym.Env):
|
|||||||
|
|
||||||
self._is_collided = self_collision
|
self._is_collided = self_collision
|
||||||
|
|
||||||
|
def _get_reward(self, acc):
|
||||||
|
success = False
|
||||||
|
reward = -np.inf
|
||||||
|
if not self._is_collided:
|
||||||
|
dist = np.inf
|
||||||
|
# return intermediate reward for via point
|
||||||
|
if self._steps == 100:
|
||||||
|
dist = np.linalg.norm(self.end_effector - self._via_point)
|
||||||
|
# return reward in last time step for goal
|
||||||
|
elif self._steps == 199:
|
||||||
|
dist = np.linalg.norm(self.end_effector - self._goal)
|
||||||
|
|
||||||
|
success = dist < 0.005
|
||||||
|
else:
|
||||||
|
# Episode terminates when colliding, hence return reward
|
||||||
|
dist = np.linalg.norm(self.end_effector - self._goal)
|
||||||
|
reward = -self.collision_penalty
|
||||||
|
|
||||||
|
reward -= dist ** 2
|
||||||
|
reward -= 5e-8 * np.sum(acc ** 2)
|
||||||
|
info = {"is_success": success}
|
||||||
|
|
||||||
|
return reward, info
|
||||||
|
|
||||||
def _get_obs(self):
|
def _get_obs(self):
|
||||||
theta = self._joint_angles
|
theta = self._joint_angles
|
||||||
return np.hstack([
|
return np.hstack([
|
||||||
np.cos(theta),
|
np.cos(theta),
|
||||||
np.sin(theta),
|
np.sin(theta),
|
||||||
self._angle_velocity,
|
self._angle_velocity,
|
||||||
self.end_effector - self.via_point,
|
self.end_effector - self._via_point,
|
||||||
self.end_effector - self.goal_point,
|
self.end_effector - self._goal,
|
||||||
self._steps
|
self._steps
|
||||||
])
|
])
|
||||||
|
|
||||||
@ -133,7 +165,7 @@ class ViaPointReacher(gym.Env):
|
|||||||
|
|
||||||
accumulated_theta = np.cumsum(theta, axis=0)
|
accumulated_theta = np.cumsum(theta, axis=0)
|
||||||
|
|
||||||
endeffector = np.zeros(shape=(self.num_links, num_points_per_link, 2))
|
endeffector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
|
||||||
|
|
||||||
x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
|
x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
|
||||||
y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
|
y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
|
||||||
@ -141,33 +173,46 @@ class ViaPointReacher(gym.Env):
|
|||||||
endeffector[0, :, 0] = x[0, :]
|
endeffector[0, :, 0] = x[0, :]
|
||||||
endeffector[0, :, 1] = y[0, :]
|
endeffector[0, :, 1] = y[0, :]
|
||||||
|
|
||||||
for i in range(1, self.num_links):
|
for i in range(1, self.n_links):
|
||||||
endeffector[i, :, 0] = x[i, :] + endeffector[i - 1, -1, 0]
|
endeffector[i, :, 0] = x[i, :] + endeffector[i - 1, -1, 0]
|
||||||
endeffector[i, :, 1] = y[i, :] + endeffector[i - 1, -1, 1]
|
endeffector[i, :, 1] = y[i, :] + endeffector[i - 1, -1, 1]
|
||||||
|
|
||||||
return np.squeeze(endeffector + self._joints[0, :])
|
return np.squeeze(endeffector + self._joints[0, :])
|
||||||
|
|
||||||
def render(self, mode='human'):
|
def render(self, mode='human'):
|
||||||
|
goal_pos = self._goal.T
|
||||||
|
via_pos = self._via_point.T
|
||||||
|
|
||||||
if self.fig is None:
|
if self.fig is None:
|
||||||
|
# Create base figure once on the beginning. Afterwards only update
|
||||||
|
plt.ion()
|
||||||
self.fig = plt.figure()
|
self.fig = plt.figure()
|
||||||
# plt.ion()
|
ax = self.fig.add_subplot(1, 1, 1)
|
||||||
# plt.pause(0.01)
|
|
||||||
else:
|
# limits
|
||||||
plt.figure(self.fig.number)
|
lim = np.sum(self.link_lengths) + 0.5
|
||||||
|
ax.set_xlim([-lim, lim])
|
||||||
|
ax.set_ylim([-lim, lim])
|
||||||
|
|
||||||
|
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||||
|
self.goal_point_plot, = ax.plot(goal_pos[0], goal_pos[1], 'go')
|
||||||
|
self.via_point_plot, = ax.plot(via_pos[0], via_pos[1], 'gx')
|
||||||
|
|
||||||
|
self.fig.show()
|
||||||
|
|
||||||
|
self.fig.gca().set_title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
|
||||||
|
|
||||||
if mode == "human":
|
if mode == "human":
|
||||||
plt.cla()
|
# goal
|
||||||
plt.title(f"Iteration: {self._steps}")
|
if self._steps == 1:
|
||||||
|
self.goal_point_plot.set_data(goal_pos[0], goal_pos[1])
|
||||||
|
self.via_point_plot.set_data(via_pos[0], goal_pos[1])
|
||||||
|
|
||||||
# Arm
|
# arm
|
||||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
self.line.set_data(self._joints[:, 0], self._joints[:, 1])
|
||||||
|
|
||||||
lim = np.sum(self.link_lengths) + 0.5
|
self.fig.canvas.draw()
|
||||||
plt.xlim([-lim, lim])
|
self.fig.canvas.flush_events()
|
||||||
plt.ylim([-lim, lim])
|
|
||||||
# plt.draw()
|
|
||||||
plt.pause(1e-4) # pushes window to foreground, which is annoying.
|
|
||||||
# self.fig.canvas.flush_events()
|
|
||||||
|
|
||||||
elif mode == "partial":
|
elif mode == "partial":
|
||||||
if self._steps == 1:
|
if self._steps == 1:
|
||||||
@ -196,12 +241,39 @@ class ViaPointReacher(gym.Env):
|
|||||||
# Add the patch to the Axes
|
# Add the patch to the Axes
|
||||||
[plt.gca().add_patch(rect) for rect in self.patches]
|
[plt.gca().add_patch(rect) for rect in self.patches]
|
||||||
|
|
||||||
plt.xlim(-self.num_links, self.num_links), plt.ylim(-1, self.num_links)
|
plt.xlim(-self.n_links, self.n_links), plt.ylim(-1, self.n_links)
|
||||||
# Arm
|
# Arm
|
||||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||||
|
|
||||||
plt.pause(0.01)
|
plt.pause(0.01)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def active_obs(self):
|
||||||
|
return np.hstack([
|
||||||
|
[self.random_start] * self.n_links, # cos
|
||||||
|
[self.random_start] * self.n_links, # sin
|
||||||
|
[self.random_start] * self.n_links, # velocity
|
||||||
|
[self._via_target is None] * 2, # x-y coordinates of via point distance
|
||||||
|
[True] * 2, # x-y coordinates of target distance
|
||||||
|
[False] # env steps
|
||||||
|
])
|
||||||
|
|
||||||
|
@property
|
||||||
|
def start_pos(self) -> Union[float, int, np.ndarray]:
|
||||||
|
return self._start_pos
|
||||||
|
|
||||||
|
@property
|
||||||
|
def goal_pos(self) -> Union[float, int, np.ndarray]:
|
||||||
|
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
|
||||||
|
|
||||||
|
def seed(self, seed=None):
|
||||||
|
self.np_random, seed = seeding.np_random(seed)
|
||||||
|
return [seed]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def end_effector(self):
|
||||||
|
return self._joints[self.n_links].T
|
||||||
|
|
||||||
def close(self):
|
def close(self):
|
||||||
if self.fig is not None:
|
if self.fig is not None:
|
||||||
plt.close(self.fig)
|
plt.close(self.fig)
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
from alr_envs.utils.wrapper.detpmp_wrapper import DetPMPWrapper
|
from alr_envs.utils.mps.detpmp_wrapper import DetPMPWrapper
|
||||||
from alr_envs.utils.wrapper.dmp_wrapper import DmpWrapper
|
from alr_envs.utils.mps.dmp_wrapper import DmpWrapper
|
||||||
from alr_envs.mujoco.ball_in_a_cup.ball_in_a_cup import ALRBallInACupEnv
|
from alr_envs.mujoco.ball_in_a_cup.ball_in_a_cup import ALRBallInACupEnv
|
||||||
|
|
||||||
|
|
||||||
@ -17,19 +17,8 @@ def make_contextual_env(rank, seed=0):
|
|||||||
def _init():
|
def _init():
|
||||||
env = ALRBallInACupEnv(reward_type="contextual_goal")
|
env = ALRBallInACupEnv(reward_type="contextual_goal")
|
||||||
|
|
||||||
env = DetPMPWrapper(env,
|
env = DetPMPWrapper(env, num_dof=7, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
|
||||||
num_dof=7,
|
policy_type="motor", weights_scale=0.5, zero_start=True, zero_goal=True)
|
||||||
num_basis=5,
|
|
||||||
width=0.005,
|
|
||||||
policy_type="motor",
|
|
||||||
start_pos=env.start_pos,
|
|
||||||
duration=3.5,
|
|
||||||
post_traj_time=4.5,
|
|
||||||
dt=env.dt,
|
|
||||||
weights_scale=0.5,
|
|
||||||
zero_start=True,
|
|
||||||
zero_goal=True
|
|
||||||
)
|
|
||||||
|
|
||||||
env.seed(seed + rank)
|
env.seed(seed + rank)
|
||||||
return env
|
return env
|
||||||
@ -51,19 +40,8 @@ def make_env(rank, seed=0):
|
|||||||
def _init():
|
def _init():
|
||||||
env = ALRBallInACupEnv(reward_type="simple")
|
env = ALRBallInACupEnv(reward_type="simple")
|
||||||
|
|
||||||
env = DetPMPWrapper(env,
|
env = DetPMPWrapper(env, num_dof=7, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
|
||||||
num_dof=7,
|
policy_type="motor", weights_scale=0.2, zero_start=True, zero_goal=True)
|
||||||
num_basis=5,
|
|
||||||
width=0.005,
|
|
||||||
policy_type="motor",
|
|
||||||
start_pos=env.start_pos,
|
|
||||||
duration=3.5,
|
|
||||||
post_traj_time=4.5,
|
|
||||||
dt=env.dt,
|
|
||||||
weights_scale=0.2,
|
|
||||||
zero_start=True,
|
|
||||||
zero_goal=True
|
|
||||||
)
|
|
||||||
|
|
||||||
env.seed(seed + rank)
|
env.seed(seed + rank)
|
||||||
return env
|
return env
|
||||||
@ -85,20 +63,8 @@ def make_simple_env(rank, seed=0):
|
|||||||
def _init():
|
def _init():
|
||||||
env = ALRBallInACupEnv(reward_type="simple")
|
env = ALRBallInACupEnv(reward_type="simple")
|
||||||
|
|
||||||
env = DetPMPWrapper(env,
|
env = DetPMPWrapper(env, num_dof=3, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
|
||||||
num_dof=3,
|
policy_type="motor", weights_scale=0.25, zero_start=True, zero_goal=True, off=-0.1)
|
||||||
num_basis=5,
|
|
||||||
width=0.005,
|
|
||||||
off=-0.1,
|
|
||||||
policy_type="motor",
|
|
||||||
start_pos=env.start_pos[1::2],
|
|
||||||
duration=3.5,
|
|
||||||
post_traj_time=4.5,
|
|
||||||
dt=env.dt,
|
|
||||||
weights_scale=0.25,
|
|
||||||
zero_start=True,
|
|
||||||
zero_goal=True
|
|
||||||
)
|
|
||||||
|
|
||||||
env.seed(seed + rank)
|
env.seed(seed + rank)
|
||||||
return env
|
return env
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
from alr_envs.utils.wrapper.detpmp_wrapper import DetPMPWrapper
|
from alr_envs.utils.mps.detpmp_wrapper import DetPMPWrapper
|
||||||
from alr_envs.mujoco.beerpong.beerpong import ALRBeerpongEnv
|
from alr_envs.mujoco.beerpong.beerpong import ALRBeerpongEnv
|
||||||
from alr_envs.mujoco.beerpong.beerpong_simple import ALRBeerpongEnv as ALRBeerpongEnvSimple
|
from alr_envs.mujoco.beerpong.beerpong_simple import ALRBeerpongEnv as ALRBeerpongEnvSimple
|
||||||
|
|
||||||
@ -17,19 +17,8 @@ def make_contextual_env(rank, seed=0):
|
|||||||
def _init():
|
def _init():
|
||||||
env = ALRBeerpongEnv()
|
env = ALRBeerpongEnv()
|
||||||
|
|
||||||
env = DetPMPWrapper(env,
|
env = DetPMPWrapper(env, num_dof=7, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
|
||||||
num_dof=7,
|
policy_type="motor", weights_scale=0.5, zero_start=True, zero_goal=True)
|
||||||
num_basis=5,
|
|
||||||
width=0.005,
|
|
||||||
policy_type="motor",
|
|
||||||
start_pos=env.start_pos,
|
|
||||||
duration=3.5,
|
|
||||||
post_traj_time=4.5,
|
|
||||||
dt=env.dt,
|
|
||||||
weights_scale=0.5,
|
|
||||||
zero_start=True,
|
|
||||||
zero_goal=True
|
|
||||||
)
|
|
||||||
|
|
||||||
env.seed(seed + rank)
|
env.seed(seed + rank)
|
||||||
return env
|
return env
|
||||||
@ -51,19 +40,8 @@ def make_env(rank, seed=0):
|
|||||||
def _init():
|
def _init():
|
||||||
env = ALRBeerpongEnvSimple()
|
env = ALRBeerpongEnvSimple()
|
||||||
|
|
||||||
env = DetPMPWrapper(env,
|
env = DetPMPWrapper(env, num_dof=7, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
|
||||||
num_dof=7,
|
policy_type="motor", weights_scale=0.25, zero_start=True, zero_goal=True)
|
||||||
num_basis=5,
|
|
||||||
width=0.005,
|
|
||||||
policy_type="motor",
|
|
||||||
start_pos=env.start_pos,
|
|
||||||
duration=3.5,
|
|
||||||
post_traj_time=4.5,
|
|
||||||
dt=env.dt,
|
|
||||||
weights_scale=0.25,
|
|
||||||
zero_start=True,
|
|
||||||
zero_goal=True
|
|
||||||
)
|
|
||||||
|
|
||||||
env.seed(seed + rank)
|
env.seed(seed + rank)
|
||||||
return env
|
return env
|
||||||
@ -85,19 +63,8 @@ def make_simple_env(rank, seed=0):
|
|||||||
def _init():
|
def _init():
|
||||||
env = ALRBeerpongEnvSimple()
|
env = ALRBeerpongEnvSimple()
|
||||||
|
|
||||||
env = DetPMPWrapper(env,
|
env = DetPMPWrapper(env, num_dof=3, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
|
||||||
num_dof=3,
|
policy_type="motor", weights_scale=0.5, zero_start=True, zero_goal=True)
|
||||||
num_basis=5,
|
|
||||||
width=0.005,
|
|
||||||
policy_type="motor",
|
|
||||||
start_pos=env.start_pos[1::2],
|
|
||||||
duration=3.5,
|
|
||||||
post_traj_time=4.5,
|
|
||||||
dt=env.dt,
|
|
||||||
weights_scale=0.5,
|
|
||||||
zero_start=True,
|
|
||||||
zero_goal=True
|
|
||||||
)
|
|
||||||
|
|
||||||
env.seed(seed + rank)
|
env.seed(seed + rank)
|
||||||
return env
|
return env
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
import alr_envs.classic_control.hole_reacher as hr
|
import alr_envs.classic_control.hole_reacher as hr
|
||||||
import alr_envs.classic_control.viapoint_reacher as vpr
|
import alr_envs.classic_control.viapoint_reacher as vpr
|
||||||
from alr_envs.utils.wrapper.dmp_wrapper import DmpWrapper
|
from alr_envs.utils.mps.dmp_wrapper import DmpWrapper
|
||||||
from alr_envs.utils.wrapper.detpmp_wrapper import DetPMPWrapper
|
from alr_envs.utils.mps.detpmp_wrapper import DetPMPWrapper
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
@ -49,7 +49,7 @@ def make_holereacher_env(rank, seed=0):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
def _init():
|
def _init():
|
||||||
_env = hr.HoleReacher(n_links=5,
|
_env = hr.HoleReacherEnv(n_links=5,
|
||||||
allow_self_collision=False,
|
allow_self_collision=False,
|
||||||
allow_wall_collision=False,
|
allow_wall_collision=False,
|
||||||
hole_width=0.25,
|
hole_width=0.25,
|
||||||
@ -65,7 +65,7 @@ def make_holereacher_env(rank, seed=0):
|
|||||||
dt=_env.dt,
|
dt=_env.dt,
|
||||||
learn_goal=True,
|
learn_goal=True,
|
||||||
alpha_phase=2,
|
alpha_phase=2,
|
||||||
start_pos=_env.start_pos,
|
start_pos=_env._start_pos,
|
||||||
policy_type="velocity",
|
policy_type="velocity",
|
||||||
weights_scale=50,
|
weights_scale=50,
|
||||||
goal_scale=0.1
|
goal_scale=0.1
|
||||||
@ -89,7 +89,7 @@ def make_holereacher_fix_goal_env(rank, seed=0):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
def _init():
|
def _init():
|
||||||
_env = hr.HoleReacher(n_links=5,
|
_env = hr.HoleReacherEnv(n_links=5,
|
||||||
allow_self_collision=False,
|
allow_self_collision=False,
|
||||||
allow_wall_collision=False,
|
allow_wall_collision=False,
|
||||||
hole_width=0.15,
|
hole_width=0.15,
|
||||||
@ -105,7 +105,7 @@ def make_holereacher_fix_goal_env(rank, seed=0):
|
|||||||
learn_goal=False,
|
learn_goal=False,
|
||||||
final_pos=np.array([2.02669572, -1.25966385, -1.51618198, -0.80946476, 0.02012344]),
|
final_pos=np.array([2.02669572, -1.25966385, -1.51618198, -0.80946476, 0.02012344]),
|
||||||
alpha_phase=2,
|
alpha_phase=2,
|
||||||
start_pos=_env.start_pos,
|
start_pos=_env._start_pos,
|
||||||
policy_type="velocity",
|
policy_type="velocity",
|
||||||
weights_scale=50,
|
weights_scale=50,
|
||||||
goal_scale=1
|
goal_scale=1
|
||||||
@ -129,7 +129,7 @@ def make_holereacher_env_pmp(rank, seed=0):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
def _init():
|
def _init():
|
||||||
_env = hr.HoleReacher(n_links=5,
|
_env = hr.HoleReacherEnv(n_links=5,
|
||||||
allow_self_collision=False,
|
allow_self_collision=False,
|
||||||
allow_wall_collision=False,
|
allow_wall_collision=False,
|
||||||
hole_width=0.15,
|
hole_width=0.15,
|
||||||
@ -137,19 +137,8 @@ def make_holereacher_env_pmp(rank, seed=0):
|
|||||||
hole_x=1,
|
hole_x=1,
|
||||||
collision_penalty=1000)
|
collision_penalty=1000)
|
||||||
|
|
||||||
_env = DetPMPWrapper(_env,
|
_env = DetPMPWrapper(_env, num_dof=5, num_basis=5, width=0.02, duration=2, dt=_env.dt, post_traj_time=0,
|
||||||
num_dof=5,
|
policy_type="velocity", weights_scale=0.2, zero_start=True, zero_goal=False)
|
||||||
num_basis=5,
|
|
||||||
width=0.02,
|
|
||||||
policy_type="velocity",
|
|
||||||
start_pos=_env.start_pos,
|
|
||||||
duration=2,
|
|
||||||
post_traj_time=0,
|
|
||||||
dt=_env.dt,
|
|
||||||
weights_scale=0.2,
|
|
||||||
zero_start=True,
|
|
||||||
zero_goal=False
|
|
||||||
)
|
|
||||||
_env.seed(seed + rank)
|
_env.seed(seed + rank)
|
||||||
return _env
|
return _env
|
||||||
|
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
from alr_envs.utils.wrapper.dmp_wrapper import DmpWrapper
|
from alr_envs.utils.mps.dmp_wrapper import DmpWrapper
|
||||||
from alr_envs.utils.wrapper.detpmp_wrapper import DetPMPWrapper
|
from alr_envs.utils.mps.detpmp_wrapper import DetPMPWrapper
|
||||||
import gym
|
import gym
|
||||||
from gym.vector.utils import write_to_shared_memory
|
from gym.vector.utils import write_to_shared_memory
|
||||||
import sys
|
import sys
|
||||||
|
@ -2,26 +2,27 @@ import gym
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from mp_lib import det_promp
|
from mp_lib import det_promp
|
||||||
|
|
||||||
from alr_envs.utils.wrapper.mp_wrapper import MPWrapper
|
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||||
|
from alr_envs.utils.mps.mp_wrapper import MPWrapper
|
||||||
|
|
||||||
|
|
||||||
class DetPMPWrapper(MPWrapper):
|
class DetPMPWrapper(MPWrapper):
|
||||||
def __init__(self, env, num_dof, num_basis, width, start_pos=None, duration=1, dt=0.01, post_traj_time=0.,
|
def __init__(self, env: MPEnv, num_dof: int, num_basis: int, width: int, duration: int = 1, dt: float = 0.01,
|
||||||
policy_type=None, weights_scale=1, zero_start=False, zero_goal=False, **mp_kwargs):
|
post_traj_time: float = 0., policy_type: str = None, weights_scale: float = 1.,
|
||||||
# self.duration = duration # seconds
|
zero_start: bool = False, zero_goal: bool = False, **mp_kwargs):
|
||||||
|
self.duration = duration # seconds
|
||||||
|
|
||||||
super().__init__(env, num_dof, duration, dt, post_traj_time, policy_type, weights_scale,
|
super().__init__(env, num_dof, dt, duration, post_traj_time, policy_type, weights_scale, num_basis=num_basis,
|
||||||
num_basis=num_basis, width=width, start_pos=start_pos, zero_start=zero_start,
|
width=width, zero_start=zero_start, zero_goal=zero_goal, **mp_kwargs)
|
||||||
zero_goal=zero_goal)
|
|
||||||
|
self.dt = dt
|
||||||
|
|
||||||
action_bounds = np.inf * np.ones((self.mp.n_basis * self.mp.n_dof))
|
action_bounds = np.inf * np.ones((self.mp.n_basis * self.mp.n_dof))
|
||||||
self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32)
|
self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32)
|
||||||
|
|
||||||
self.start_pos = start_pos
|
|
||||||
self.dt = dt
|
|
||||||
|
|
||||||
def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5, width: float = None,
|
def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5, width: float = None,
|
||||||
start_pos: np.ndarray = None, zero_start: bool = False, zero_goal: bool = False):
|
zero_start: bool = False, zero_goal: bool = False):
|
||||||
pmp = det_promp.DeterministicProMP(n_basis=num_basis, n_dof=num_dof, width=width, off=0.01,
|
pmp = det_promp.DeterministicProMP(n_basis=num_basis, n_dof=num_dof, width=width, off=0.01,
|
||||||
zero_start=zero_start, zero_goal=zero_goal)
|
zero_start=zero_start, zero_goal=zero_goal)
|
||||||
|
|
@ -1,19 +1,18 @@
|
|||||||
from mp_lib.phase import ExpDecayPhaseGenerator
|
|
||||||
from mp_lib.basis import DMPBasisGenerator
|
|
||||||
from mp_lib import dmps
|
|
||||||
import numpy as np
|
|
||||||
import gym
|
import gym
|
||||||
|
import numpy as np
|
||||||
|
from mp_lib import dmps
|
||||||
|
from mp_lib.basis import DMPBasisGenerator
|
||||||
|
from mp_lib.phase import ExpDecayPhaseGenerator
|
||||||
|
|
||||||
from alr_envs.utils.wrapper.mp_wrapper import MPWrapper
|
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||||
|
from alr_envs.utils.mps.mp_wrapper import MPWrapper
|
||||||
|
|
||||||
|
|
||||||
class DmpWrapper(MPWrapper):
|
class DmpWrapper(MPWrapper):
|
||||||
|
|
||||||
def __init__(self, env: gym.Env, num_dof: int, num_basis: int,
|
def __init__(self, env: MPEnv, num_dof: int, num_basis: int,
|
||||||
# start_pos: np.ndarray = None,
|
|
||||||
# final_pos: np.ndarray = None,
|
|
||||||
duration: int = 1, alpha_phase: float = 2., dt: float = None,
|
duration: int = 1, alpha_phase: float = 2., dt: float = None,
|
||||||
learn_goal: bool = False, return_to_start: bool = False, post_traj_time: float = 0.,
|
learn_goal: bool = False, post_traj_time: float = 0.,
|
||||||
weights_scale: float = 1., goal_scale: float = 1., bandwidth_factor: float = 3.,
|
weights_scale: float = 1., goal_scale: float = 1., bandwidth_factor: float = 3.,
|
||||||
policy_type: str = None, render_mode: str = None):
|
policy_type: str = None, render_mode: str = None):
|
||||||
|
|
||||||
@ -23,8 +22,6 @@ class DmpWrapper(MPWrapper):
|
|||||||
env:
|
env:
|
||||||
num_dof:
|
num_dof:
|
||||||
num_basis:
|
num_basis:
|
||||||
start_pos:
|
|
||||||
final_pos:
|
|
||||||
duration:
|
duration:
|
||||||
alpha_phase:
|
alpha_phase:
|
||||||
dt:
|
dt:
|
||||||
@ -37,30 +34,17 @@ class DmpWrapper(MPWrapper):
|
|||||||
self.learn_goal = learn_goal
|
self.learn_goal = learn_goal
|
||||||
dt = env.dt if hasattr(env, "dt") else dt
|
dt = env.dt if hasattr(env, "dt") else dt
|
||||||
assert dt is not None
|
assert dt is not None
|
||||||
# start_pos = start_pos if start_pos is not None else env.start_pos if hasattr(env, "start_pos") else None
|
|
||||||
# TODO: assert start_pos is not None # start_pos will be set in initialize, do we need this here?
|
|
||||||
# if learn_goal:
|
|
||||||
# final_pos = np.zeros_like(start_pos) # arbitrary, will be learned
|
|
||||||
# final_pos = np.zeros((1, num_dof)) # arbitrary, will be learned
|
|
||||||
# else:
|
|
||||||
# final_pos = final_pos if final_pos is not None else start_pos if return_to_start else None
|
|
||||||
# assert final_pos is not None
|
|
||||||
self.t = np.linspace(0, duration, int(duration / dt))
|
self.t = np.linspace(0, duration, int(duration / dt))
|
||||||
self.goal_scale = goal_scale
|
self.goal_scale = goal_scale
|
||||||
|
|
||||||
super().__init__(env, num_dof, duration, dt, post_traj_time, policy_type, weights_scale, render_mode,
|
super().__init__(env, num_dof, dt, duration, post_traj_time, policy_type, weights_scale, render_mode,
|
||||||
num_basis=num_basis,
|
num_basis=num_basis, alpha_phase=alpha_phase, bandwidth_factor=bandwidth_factor)
|
||||||
# start_pos=start_pos, final_pos=final_pos,
|
|
||||||
alpha_phase=alpha_phase,
|
|
||||||
bandwidth_factor=bandwidth_factor)
|
|
||||||
|
|
||||||
action_bounds = np.inf * np.ones((np.prod(self.mp.dmp_weights.shape) + (num_dof if learn_goal else 0)))
|
action_bounds = np.inf * np.ones((np.prod(self.mp.dmp_weights.shape) + (num_dof if learn_goal else 0)))
|
||||||
self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32)
|
self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32)
|
||||||
|
|
||||||
def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5,
|
def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5, alpha_phase: float = 2.,
|
||||||
# start_pos: np.ndarray = None,
|
bandwidth_factor: int = 3):
|
||||||
# final_pos: np.ndarray = None,
|
|
||||||
alpha_phase: float = 2., bandwidth_factor: float = 3.):
|
|
||||||
|
|
||||||
phase_generator = ExpDecayPhaseGenerator(alpha_phase=alpha_phase, duration=duration)
|
phase_generator = ExpDecayPhaseGenerator(alpha_phase=alpha_phase, duration=duration)
|
||||||
basis_generator = DMPBasisGenerator(phase_generator, duration=duration, num_basis=num_basis,
|
basis_generator = DMPBasisGenerator(phase_generator, duration=duration, num_basis=num_basis,
|
||||||
@ -69,15 +53,6 @@ class DmpWrapper(MPWrapper):
|
|||||||
dmp = dmps.DMP(num_dof=num_dof, basis_generator=basis_generator, phase_generator=phase_generator,
|
dmp = dmps.DMP(num_dof=num_dof, basis_generator=basis_generator, phase_generator=phase_generator,
|
||||||
num_time_steps=int(duration / dt), dt=dt)
|
num_time_steps=int(duration / dt), dt=dt)
|
||||||
|
|
||||||
# dmp.dmp_start_pos = start_pos.reshape((1, num_dof))
|
|
||||||
# in a contextual environment, the start_pos may be not fixed, set in mp_rollout?
|
|
||||||
# TODO: Should we set start_pos in init at all? It's only used after calling rollout anyway...
|
|
||||||
# dmp.dmp_start_pos = start_pos.reshape((1, num_dof)) if start_pos is not None else np.zeros((1, num_dof))
|
|
||||||
|
|
||||||
# weights = np.zeros((num_basis, num_dof))
|
|
||||||
# goal_pos = np.zeros(num_dof) if self.learn_goal else final_pos
|
|
||||||
|
|
||||||
# dmp.set_weights(weights, goal_pos)
|
|
||||||
return dmp
|
return dmp
|
||||||
|
|
||||||
def goal_and_weights(self, params):
|
def goal_and_weights(self, params):
|
||||||
@ -87,18 +62,15 @@ class DmpWrapper(MPWrapper):
|
|||||||
if self.learn_goal:
|
if self.learn_goal:
|
||||||
goal_pos = params[0, -self.mp.num_dimensions:] # [num_dof]
|
goal_pos = params[0, -self.mp.num_dimensions:] # [num_dof]
|
||||||
params = params[:, :-self.mp.num_dimensions] # [1,num_dof]
|
params = params[:, :-self.mp.num_dimensions] # [1,num_dof]
|
||||||
# weight_matrix = np.reshape(params[:, :-self.num_dof], [self.num_basis, self.num_dof])
|
|
||||||
else:
|
else:
|
||||||
goal_pos = self.env.goal_pos # self.mp.dmp_goal_pos.flatten()
|
goal_pos = self.env.goal_pos
|
||||||
assert goal_pos is not None
|
assert goal_pos is not None
|
||||||
# weight_matrix = np.reshape(params, [self.num_basis, self.num_dof])
|
|
||||||
|
|
||||||
weight_matrix = np.reshape(params, self.mp.dmp_weights.shape)
|
weight_matrix = np.reshape(params, self.mp.dmp_weights.shape) # [num_basis, num_dof]
|
||||||
return goal_pos * self.goal_scale, weight_matrix * self.weights_scale
|
return goal_pos * self.goal_scale, weight_matrix * self.weights_scale
|
||||||
|
|
||||||
def mp_rollout(self, action):
|
def mp_rollout(self, action):
|
||||||
# if self.mp.start_pos is None:
|
self.mp.dmp_start_pos = self.env.start_pos
|
||||||
self.mp.dmp_start_pos = self.env.init_qpos.reshape((1, self.num_dof)) # start_pos
|
|
||||||
goal_pos, weight_matrix = self.goal_and_weights(action)
|
goal_pos, weight_matrix = self.goal_and_weights(action)
|
||||||
self.mp.set_weights(weight_matrix, goal_pos)
|
self.mp.set_weights(weight_matrix, goal_pos)
|
||||||
return self.mp.reference_trajectory(self.t)
|
return self.mp.reference_trajectory(self.t)
|
33
alr_envs/utils/mps/mp_environments.py
Normal file
33
alr_envs/utils/mps/mp_environments.py
Normal file
@ -0,0 +1,33 @@
|
|||||||
|
from abc import abstractmethod
|
||||||
|
from typing import Union
|
||||||
|
|
||||||
|
import gym
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
class MPEnv(gym.Env):
|
||||||
|
|
||||||
|
@property
|
||||||
|
@abstractmethod
|
||||||
|
def active_obs(self):
|
||||||
|
"""Returns boolean value for each observation entry
|
||||||
|
whether the observation is returned by the DMP for the contextual case or not.
|
||||||
|
This effectively allows to filter unwanted or unnecessary observations from the full step-based case.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
@property
|
||||||
|
@abstractmethod
|
||||||
|
def start_pos(self) -> Union[float, int, np.ndarray]:
|
||||||
|
"""
|
||||||
|
Returns the current position of the joints
|
||||||
|
"""
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def goal_pos(self) -> Union[float, int, np.ndarray]:
|
||||||
|
"""
|
||||||
|
Returns the current final position of the joints for the MP.
|
||||||
|
By default this returns the starting position.
|
||||||
|
"""
|
||||||
|
return self.start_pos
|
@ -1,32 +1,24 @@
|
|||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from collections import defaultdict
|
|
||||||
|
|
||||||
import gym
|
import gym
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||||
from alr_envs.utils.policies import get_policy_class
|
from alr_envs.utils.policies import get_policy_class
|
||||||
|
|
||||||
|
|
||||||
class MPWrapper(gym.Wrapper, ABC):
|
class MPWrapper(gym.Wrapper, ABC):
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self, env: MPEnv, num_dof: int, dt: float, duration: int = 1, post_traj_time: float = 0.,
|
||||||
env: gym.Env,
|
policy_type: str = None, weights_scale: float = 1., render_mode: str = None, **mp_kwargs):
|
||||||
num_dof: int,
|
|
||||||
duration: int = 1,
|
|
||||||
dt: float = None,
|
|
||||||
post_traj_time: float = 0.,
|
|
||||||
policy_type: str = None,
|
|
||||||
weights_scale: float = 1.,
|
|
||||||
render_mode: str = None,
|
|
||||||
**mp_kwargs
|
|
||||||
):
|
|
||||||
super().__init__(env)
|
super().__init__(env)
|
||||||
|
|
||||||
self.num_dof = num_dof
|
# adjust observation space to reduce version
|
||||||
# self.num_basis = num_basis
|
obs_sp = self.env.observation_space
|
||||||
# self.duration = duration # seconds
|
self.observation_space = gym.spaces.Box(low=obs_sp.low[self.env.active_obs],
|
||||||
|
high=obs_sp.high[self.env.active_obs],
|
||||||
|
dtype=obs_sp.dtype)
|
||||||
|
|
||||||
# dt = env.dt if hasattr(env, "dt") else dt
|
|
||||||
assert dt is not None # this should never happen as MPWrapper is a base class
|
assert dt is not None # this should never happen as MPWrapper is a base class
|
||||||
self.post_traj_steps = int(post_traj_time / dt)
|
self.post_traj_steps = int(post_traj_time / dt)
|
||||||
|
|
||||||
@ -40,8 +32,11 @@ class MPWrapper(gym.Wrapper, ABC):
|
|||||||
self.render_mode = render_mode
|
self.render_mode = render_mode
|
||||||
self.render_kwargs = {}
|
self.render_kwargs = {}
|
||||||
|
|
||||||
# TODO: not yet final
|
# TODO: @Max I think this should not be in this class, this functionality should be part of your sampler.
|
||||||
def __call__(self, params, contexts=None):
|
def __call__(self, params, contexts=None):
|
||||||
|
"""
|
||||||
|
Can be used to provide a batch of parameter sets
|
||||||
|
"""
|
||||||
params = np.atleast_2d(params)
|
params = np.atleast_2d(params)
|
||||||
obs = []
|
obs = []
|
||||||
rewards = []
|
rewards = []
|
||||||
@ -50,7 +45,6 @@ class MPWrapper(gym.Wrapper, ABC):
|
|||||||
# for p, c in zip(params, contexts):
|
# for p, c in zip(params, contexts):
|
||||||
for p in params:
|
for p in params:
|
||||||
# self.configure(c)
|
# self.configure(c)
|
||||||
# context = self.reset()
|
|
||||||
ob, reward, done, info = self.step(p)
|
ob, reward, done, info = self.step(p)
|
||||||
obs.append(ob)
|
obs.append(ob)
|
||||||
rewards.append(reward)
|
rewards.append(reward)
|
||||||
@ -63,8 +57,7 @@ class MPWrapper(gym.Wrapper, ABC):
|
|||||||
self.env.configure(context)
|
self.env.configure(context)
|
||||||
|
|
||||||
def reset(self):
|
def reset(self):
|
||||||
obs = self.env.reset()
|
return self.env.reset()[self.env.active_obs]
|
||||||
return obs
|
|
||||||
|
|
||||||
def step(self, action: np.ndarray):
|
def step(self, action: np.ndarray):
|
||||||
""" This function generates a trajectory based on a DMP and then does the usual loop over reset and step"""
|
""" This function generates a trajectory based on a DMP and then does the usual loop over reset and step"""
|
||||||
@ -78,15 +71,9 @@ class MPWrapper(gym.Wrapper, ABC):
|
|||||||
# self._velocity = velocity
|
# self._velocity = velocity
|
||||||
|
|
||||||
rewards = 0
|
rewards = 0
|
||||||
# infos = defaultdict(list)
|
|
||||||
|
|
||||||
# TODO: @Max Why do we need this configure, states should be part of the model
|
|
||||||
# TODO: Ask Onur if the context distribution needs to be outside the environment
|
|
||||||
# TODO: For now create a new env with each context
|
|
||||||
# TODO: Explicitly call reset before step to obtain context from obs?
|
|
||||||
# self.env.configure(context)
|
|
||||||
# obs = self.env.reset()
|
|
||||||
info = {}
|
info = {}
|
||||||
|
# create random obs as the reset function is called externally
|
||||||
|
obs = self.env.observation_space.sample()
|
||||||
|
|
||||||
for t, pos_vel in enumerate(zip(trajectory, velocity)):
|
for t, pos_vel in enumerate(zip(trajectory, velocity)):
|
||||||
ac = self.policy.get_action(pos_vel[0], pos_vel[1])
|
ac = self.policy.get_action(pos_vel[0], pos_vel[1])
|
||||||
@ -100,7 +87,7 @@ class MPWrapper(gym.Wrapper, ABC):
|
|||||||
break
|
break
|
||||||
|
|
||||||
done = True
|
done = True
|
||||||
return obs, rewards, done, info
|
return obs[self.env.active_obs], rewards, done, info
|
||||||
|
|
||||||
def render(self, mode='human', **kwargs):
|
def render(self, mode='human', **kwargs):
|
||||||
"""Only set render options here, such that they can be used during the rollout.
|
"""Only set render options here, such that they can be used during the rollout.
|
||||||
@ -108,18 +95,6 @@ class MPWrapper(gym.Wrapper, ABC):
|
|||||||
self.render_mode = mode
|
self.render_mode = mode
|
||||||
self.render_kwargs = kwargs
|
self.render_kwargs = kwargs
|
||||||
|
|
||||||
# def __call__(self, actions):
|
|
||||||
# return self.step(actions)
|
|
||||||
# params = np.atleast_2d(params)
|
|
||||||
# rewards = []
|
|
||||||
# infos = []
|
|
||||||
# for p, c in zip(params, contexts):
|
|
||||||
# reward, info = self.rollout(p, c)
|
|
||||||
# rewards.append(reward)
|
|
||||||
# infos.append(info)
|
|
||||||
#
|
|
||||||
# return np.array(rewards), infos
|
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def mp_rollout(self, action):
|
def mp_rollout(self, action):
|
||||||
"""
|
"""
|
11
example.py
11
example.py
@ -46,7 +46,7 @@ def example_dmp():
|
|||||||
obs = env.reset()
|
obs = env.reset()
|
||||||
|
|
||||||
|
|
||||||
def example_async(n_cpu=4, seed=int('533D', 16)):
|
def example_async(env_id="alr_envs:HoleReacherDMP-v0", n_cpu=4, seed=int('533D', 16)):
|
||||||
def make_env(env_id, seed, rank):
|
def make_env(env_id, seed, rank):
|
||||||
env = gym.make(env_id)
|
env = gym.make(env_id)
|
||||||
env.seed(seed + rank)
|
env.seed(seed + rank)
|
||||||
@ -73,7 +73,7 @@ def example_async(n_cpu=4, seed=int('533D', 16)):
|
|||||||
# do not return values above threshold
|
# do not return values above threshold
|
||||||
return (*map(lambda v: np.stack(v)[:n_samples], vals.values()),)
|
return (*map(lambda v: np.stack(v)[:n_samples], vals.values()),)
|
||||||
|
|
||||||
envs = gym.vector.AsyncVectorEnv([make_env("alr_envs:HoleReacherDMP-v0", seed, i) for i in range(n_cpu)])
|
envs = gym.vector.AsyncVectorEnv([make_env(env_id, seed, i) for i in range(n_cpu)])
|
||||||
|
|
||||||
obs = envs.reset()
|
obs = envs.reset()
|
||||||
print(sample(envs, 16))
|
print(sample(envs, 16))
|
||||||
@ -82,7 +82,6 @@ def example_async(n_cpu=4, seed=int('533D', 16)):
|
|||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
# example_mujoco()
|
# example_mujoco()
|
||||||
# example_dmp()
|
# example_dmp()
|
||||||
# example_async()
|
example_async("alr_envs:LongSimpleReacherDMP-v0", 4)
|
||||||
env = gym.make("alr_envs:HoleReacherDMP-v0")
|
# env = gym.make("alr_envs:HoleReacherDMP-v0", context=0.1)
|
||||||
# env = gym.make("alr_envs:SimpleReacherDMP-v1")
|
# env = gym.make("alr_envs:HoleReacherDMP-v1")
|
||||||
print()
|
|
||||||
|
Loading…
Reference in New Issue
Block a user