This commit is contained in:
Maximilian Huettenrauch 2021-05-17 12:49:15 +02:00
commit b39104a449
16 changed files with 671 additions and 604 deletions

View File

@ -1,7 +1,8 @@
from gym.envs.registration import register
from alr_envs.stochastic_search.functions.f_rosenbrock import Rosenbrock
# from alr_envs.utils.wrapper.dmp_wrapper import DmpWrapper
# from alr_envs.utils.mps.dmp_wrapper import DmpWrapper
# Mujoco
@ -71,6 +72,17 @@ register(
}
)
## Balancing Reacher
register(
id='Balancing-v0',
entry_point='alr_envs.mujoco:BalancingEnv',
max_episode_steps=200,
kwargs={
"n_links": 5,
}
)
register(
id='ALRBallInACupSimple-v0',
entry_point='alr_envs.mujoco:ALRBallInACupEnv',
@ -101,15 +113,7 @@ register(
# Classic control
register(
id='Balancing-v0',
entry_point='alr_envs.mujoco:BalancingEnv',
max_episode_steps=200,
kwargs={
"n_links": 5,
}
)
## Simple Reacher
register(
id='SimpleReacher-v0',
entry_point='alr_envs.classic_control:SimpleReacherEnv',
@ -129,25 +133,6 @@ register(
}
)
register(
id='EpisodicSimpleReacher-v0',
entry_point='alr_envs.classic_control:EpisodicSimpleReacherEnv',
max_episode_steps=200,
kwargs={
"n_links": 2,
}
)
register(
id='EpisodicSimpleReacher-v1',
entry_point='alr_envs.classic_control:EpisodicSimpleReacherEnv',
max_episode_steps=200,
kwargs={
"n_links": 2,
"random_start": False
}
)
register(
id='LongSimpleReacher-v0',
entry_point='alr_envs.classic_control:SimpleReacherEnv',
@ -157,6 +142,18 @@ register(
}
)
register(
id='LongSimpleReacher-v1',
entry_point='alr_envs.classic_control:SimpleReacherEnv',
max_episode_steps=200,
kwargs={
"n_links": 5,
"random_start": False
}
)
## Viapoint Reacher
register(
id='ViaPointReacher-v0',
entry_point='alr_envs.classic_control.viapoint_reacher:ViaPointReacher',
@ -168,27 +165,45 @@ register(
}
)
## Hole Reacher
register(
id='HoleReacher-v0',
entry_point='alr_envs.classic_control.hole_reacher:HoleReacher',
entry_point='alr_envs.classic_control.hole_reacher:HoleReacherEnv',
max_episode_steps=200,
kwargs={
"n_links": 5,
"allow_self_collision": False,
"allow_wall_collision": False,
"hole_width": 0.25,
"hole_width": None,
"hole_depth": 1,
"hole_x": 2,
"hole_x": None,
"collision_penalty": 100,
}
)
register(
id='HoleReacher-v1',
entry_point='alr_envs.classic_control.hole_reacher:HoleReacherEnv',
max_episode_steps=200,
kwargs={
"n_links": 5,
"random_start": False,
"allow_self_collision": False,
"allow_wall_collision": False,
"hole_width": None,
"hole_depth": 1,
"hole_x": None,
"collision_penalty": 100,
}
)
register(
id='HoleReacher-v2',
entry_point='alr_envs.classic_control.hole_reacher_v2:HoleReacher',
entry_point='alr_envs.classic_control.hole_reacher:HoleReacherEnv',
max_episode_steps=200,
kwargs={
"n_links": 5,
"random_start": False,
"allow_self_collision": False,
"allow_wall_collision": False,
"hole_width": 0.25,
@ -199,38 +214,24 @@ register(
)
# MP environments
register(
id='SimpleReacherDMP-v0',
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
# max_episode_steps=1,
kwargs={
"name": "alr_envs:EpisodicSimpleReacher-v0",
"num_dof": 2,
"num_basis": 5,
"duration": 2,
"alpha_phase": 2,
"learn_goal": True,
"policy_type": "velocity",
"weights_scale": 50,
}
)
register(
id='SimpleReacherDMP-v1',
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
# max_episode_steps=1,
kwargs={
"name": "alr_envs:EpisodicSimpleReacher-v1",
"num_dof": 2,
"num_basis": 5,
"duration": 2,
"alpha_phase": 2,
"learn_goal": True,
"policy_type": "velocity",
"weights_scale": 50,
}
)
reacher_envs = ["SimpleReacher-v0", "SimpleReacher-v1", "LongSimpleReacher-v0", "LongSimpleReacher-v1"]
for env in reacher_envs:
name = env.split("-")
register(
id=f'{name[0]}DMP-{name[1]}',
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
# max_episode_steps=1,
kwargs={
"name": f"alr_envs:{env}",
"num_dof": 2 if "long" not in env.lower() else 5 ,
"num_basis": 5,
"duration": 2,
"alpha_phase": 2,
"learn_goal": True,
"policy_type": "velocity",
"weights_scale": 50,
}
)
register(
id='ViaPointReacherDMP-v0',
@ -266,6 +267,24 @@ register(
}
)
register(
id='HoleReacherDMP-v1',
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
# max_episode_steps=1,
kwargs={
"name": "alr_envs:HoleReacher-v1",
"num_dof": 5,
"num_basis": 5,
"duration": 2,
"learn_goal": True,
"alpha_phase": 2,
"bandwidth_factor": 2,
"policy_type": "velocity",
"weights_scale": 50,
"goal_scale": 0.1
}
)
register(
id='HoleReacherDMP-v2',
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',

View File

@ -1,4 +1,4 @@
from alr_envs.classic_control.simple_reacher import SimpleReacherEnv
from alr_envs.classic_control.episodic_simple_reacher import EpisodicSimpleReacherEnv
from alr_envs.classic_control.viapoint_reacher import ViaPointReacher
from alr_envs.classic_control.hole_reacher import HoleReacher
from alr_envs.classic_control.hole_reacher import HoleReacherEnv

View File

@ -35,7 +35,7 @@ class EpisodicSimpleReacherEnv(SimpleReacherEnv):
def _get_obs(self):
if self.random_start:
theta = self._joint_angle
theta = self._joint_angles
return np.hstack([
np.cos(theta),
np.sin(theta),

View File

@ -1,27 +1,36 @@
from typing import Union
import gym
import numpy as np
import matplotlib.pyplot as plt
import numpy as np
from gym.utils import seeding
from matplotlib import patches
from alr_envs.classic_control.utils import check_self_collision
from alr_envs.utils.mps.mp_environments import MPEnv
class HoleReacher(gym.Env):
class HoleReacherEnv(MPEnv):
def __init__(self, n_links, hole_x, hole_width, hole_depth, allow_self_collision=False,
allow_wall_collision=False, collision_penalty=1000):
def __init__(self, n_links: int, hole_x: Union[None, float] = None, hole_depth: Union[None, float] = None,
hole_width: float = 1., random_start: bool = False, allow_self_collision: bool = False,
allow_wall_collision: bool = False, collision_penalty: bool = 1000):
self.n_links = n_links
self.link_lengths = np.ones((n_links, 1))
# task
self.hole_x = hole_x # x-position of center of hole
self.hole_width = hole_width # width of hole
self.hole_depth = hole_depth # depth of hole
self.random_start = random_start
self.bottom_center_of_hole = np.hstack([hole_x, -hole_depth])
self.top_center_of_hole = np.hstack([hole_x, 0])
self.left_wall_edge = np.hstack([hole_x - self.hole_width / 2, 0])
self.right_wall_edge = np.hstack([hole_x + self.hole_width / 2, 0])
# provided initial parameters
self._hole_x = hole_x # x-position of center of hole
self._hole_width = hole_width # width of hole
self._hole_depth = hole_depth # depth of hole
# temp container for current env state
self._tmp_hole_x = None
self._tmp_hole_width = None
self._tmp_hole_depth = None
self._goal = None # x-y coordinates for reaching the center at the bottom of the hole
# collision
self.allow_self_collision = allow_self_collision
@ -32,95 +41,77 @@ class HoleReacher(gym.Env):
self._joints = None
self._joint_angles = None
self._angle_velocity = None
self.start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
self.start_vel = np.zeros(self.n_links)
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
self._start_vel = np.zeros(self.n_links)
self.dt = 0.01
# self.time_limit = 2
action_bound = np.pi * np.ones((self.n_links,))
state_bound = np.hstack([
[np.pi] * self.n_links, # cos
[np.pi] * self.n_links, # sin
[np.inf] * self.n_links, # velocity
[np.inf], # hole width
[np.inf], # hole depth
[np.inf] * 2, # x-y coordinates of target distance
[np.inf] # env steps, because reward start after n steps TODO: Maybe
])
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
# containers for plotting
self.metadata = {'render.modes': ["human", "partial"]}
self.fig = None
rect_1 = patches.Rectangle((-self.n_links, -1),
self.n_links + self.hole_x - self.hole_width / 2, 1,
fill=True, edgecolor='k', facecolor='k')
rect_2 = patches.Rectangle((self.hole_x + self.hole_width / 2, -1),
self.n_links - self.hole_x + self.hole_width / 2, 1,
fill=True, edgecolor='k', facecolor='k')
rect_3 = patches.Rectangle((self.hole_x - self.hole_width / 2, -1), self.hole_width,
1 - self.hole_depth,
fill=True, edgecolor='k', facecolor='k')
self.patches = [rect_1, rect_2, rect_3]
self._steps = 0
self.seed()
@property
def init_qpos(self):
return self.start_pos
def step(self, action: np.ndarray):
"""
A single step with an action in joint velocity space
"""
@property
def end_effector(self):
return self._joints[self.n_links].T
self._angle_velocity = action
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
self._update_joints()
def configure(self, context):
pass
acc = (action - self._angle_velocity) / self.dt
reward, info = self._get_reward(acc)
info.update({"is_collided": self._is_collided})
self._steps += 1
done = self._is_collided
return self._get_obs().copy(), reward, done, info
def reset(self):
self._joint_angles = self.start_pos
self._angle_velocity = self.start_vel
if self.random_start:
# Maybe change more than dirst seed
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
self._start_pos = self._joint_angles.copy()
else:
self._joint_angles = self._start_pos
self._generate_hole()
self._set_patches()
self._angle_velocity = self._start_vel
self._joints = np.zeros((self.n_links + 1, 2))
self._update_joints()
self._steps = 0
return self._get_obs().copy()
def step(self, action: np.ndarray):
"""
a single step with an action in joint velocity space
"""
vel = action # + 0.05 * np.random.randn(self.n_links)
acc = (vel - self._angle_velocity) / self.dt
self._angle_velocity = vel
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
self._update_joints()
# rew = self._reward()
# compute reward directly in step function
success = False
reward = 0
if not self._is_collided:
if self._steps == 199:
dist = np.linalg.norm(self.end_effector - self.bottom_center_of_hole)
reward = - dist ** 2
success = dist < 0.005
else:
dist = np.linalg.norm(self.end_effector - self.bottom_center_of_hole)
# if self.collision_penalty != 0:
# reward = -self.collision_penalty
# else:
reward = - dist ** 2 - self.collision_penalty
reward -= 5e-8 * np.sum(acc ** 2)
info = {"is_collided": self._is_collided, "is_success": success}
self._steps += 1
# done = self._steps * self.dt > self.time_limit or self._is_collided
done = self._is_collided
return self._get_obs().copy(), reward, done, info
def _generate_hole(self):
self._tmp_hole_x = self.np_random.uniform(0.5, 3.5, 1) if self._hole_x is None else np.copy(self._hole_x)
self._tmp_hole_width = self.np_random.uniform(0.5, 0.1, 1) if self._hole_width is None else np.copy(
self._hole_width)
# TODO we do not want this right now.
self._tmp_hole_depth = self.np_random.uniform(1, 1, 1) if self._hole_depth is None else np.copy(
self._hole_depth)
self._goal = np.hstack([self._tmp_hole_x, -self._tmp_hole_depth])
def _update_joints(self):
"""
@ -128,7 +119,7 @@ class HoleReacher(gym.Env):
Returns:
"""
line_points_in_taskspace = self.get_forward_kinematics(num_points_per_link=20)
line_points_in_taskspace = self._get_forward_kinematics(num_points_per_link=20)
self._joints[1:, 0] = self._joints[0, 0] + line_points_in_taskspace[:, -1, 0]
self._joints[1:, 1] = self._joints[0, 1] + line_points_in_taskspace[:, -1, 1]
@ -142,48 +133,65 @@ class HoleReacher(gym.Env):
self_collision = True
if not self.allow_wall_collision:
wall_collision = self.check_wall_collision(line_points_in_taskspace)
wall_collision = self._check_wall_collision(line_points_in_taskspace)
self._is_collided = self_collision or wall_collision
def _get_reward(self, acc: np.ndarray):
success = False
reward = -np.inf
if not self._is_collided:
dist = 0
# return reward only in last time step
if self._steps == 199:
dist = np.linalg.norm(self.end_effector - self._goal)
success = dist < 0.005
else:
# Episode terminates when colliding, hence return reward
dist = np.linalg.norm(self.end_effector - self._goal)
reward = -self.collision_penalty
reward -= dist ** 2
reward -= 5e-8 * np.sum(acc ** 2)
info = {"is_success": success}
return reward, info
def _get_obs(self):
theta = self._joint_angles
return np.hstack([
np.cos(theta),
np.sin(theta),
self._angle_velocity,
self.end_effector - self.bottom_center_of_hole,
self._tmp_hole_width,
self._tmp_hole_depth,
self.end_effector - self._goal,
self._steps
])
def get_forward_kinematics(self, num_points_per_link=1):
def _get_forward_kinematics(self, num_points_per_link=1):
theta = self._joint_angles[:, None]
if num_points_per_link > 1:
intermediate_points = np.linspace(0, 1, num_points_per_link)
else:
intermediate_points = 1
intermediate_points = np.linspace(0, 1, num_points_per_link) if num_points_per_link > 1 else 1
accumulated_theta = np.cumsum(theta, axis=0)
endeffector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
end_effector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
endeffector[0, :, 0] = x[0, :]
endeffector[0, :, 1] = y[0, :]
end_effector[0, :, 0] = x[0, :]
end_effector[0, :, 1] = y[0, :]
for i in range(1, self.n_links):
endeffector[i, :, 0] = x[i, :] + endeffector[i - 1, -1, 0]
endeffector[i, :, 1] = y[i, :] + endeffector[i - 1, -1, 1]
end_effector[i, :, 0] = x[i, :] + end_effector[i - 1, -1, 0]
end_effector[i, :, 1] = y[i, :] + end_effector[i - 1, -1, 1]
return np.squeeze(endeffector + self._joints[0, :])
return np.squeeze(end_effector + self._joints[0, :])
def check_wall_collision(self, line_points):
def _check_wall_collision(self, line_points):
# all points that are before the hole in x
r, c = np.where(line_points[:, :, 0] < (self.hole_x - self.hole_width / 2))
r, c = np.where(line_points[:, :, 0] < (self._tmp_hole_x - self._tmp_hole_width / 2))
# check if any of those points are below surface
nr_line_points_below_surface_before_hole = np.sum(line_points[r, c, 1] < 0)
@ -192,7 +200,7 @@ class HoleReacher(gym.Env):
return True
# all points that are after the hole in x
r, c = np.where(line_points[:, :, 0] > (self.hole_x + self.hole_width / 2))
r, c = np.where(line_points[:, :, 0] > (self._tmp_hole_x + self._tmp_hole_width / 2))
# check if any of those points are below surface
nr_line_points_below_surface_after_hole = np.sum(line_points[r, c, 1] < 0)
@ -201,11 +209,11 @@ class HoleReacher(gym.Env):
return True
# all points that are above the hole
r, c = np.where((line_points[:, :, 0] > (self.hole_x - self.hole_width / 2)) & (
line_points[:, :, 0] < (self.hole_x + self.hole_width / 2)))
r, c = np.where((line_points[:, :, 0] > (self._tmp_hole_x - self._tmp_hole_width / 2)) & (
line_points[:, :, 0] < (self._tmp_hole_x + self._tmp_hole_width / 2)))
# check if any of those points are below surface
nr_line_points_below_surface_in_hole = np.sum(line_points[r, c, 1] < -self.hole_depth)
nr_line_points_below_surface_in_hole = np.sum(line_points[r, c, 1] < -self._tmp_hole_depth)
if nr_line_points_below_surface_in_hole > 0:
return True
@ -214,64 +222,85 @@ class HoleReacher(gym.Env):
def render(self, mode='human'):
if self.fig is None:
# Create base figure once on the beginning. Afterwards only update
plt.ion()
self.fig = plt.figure()
# plt.ion()
# plt.pause(0.01)
else:
plt.figure(self.fig.number)
ax = self.fig.add_subplot(1, 1, 1)
# limits
lim = np.sum(self.link_lengths) + 0.5
ax.set_xlim([-lim, lim])
ax.set_ylim([-1.1, lim])
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
self._set_patches()
self.fig.show()
self.fig.gca().set_title(
f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
if mode == "human":
plt.cla()
plt.title(f"Iteration: {self._steps}, distance: {self.end_effector - self.bottom_center_of_hole}")
# Arm
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
# arm
self.line.set_data(self._joints[:, 0], self._joints[:, 1])
# Add the patch to the Axes
[plt.gca().add_patch(rect) for rect in self.patches]
lim = np.sum(self.link_lengths) + 0.5
plt.xlim([-lim, lim])
plt.ylim([-1.1, lim])
# plt.draw()
plt.pause(1e-4) # pushes window to foreground, which is annoying.
# self.fig.canvas.flush_events()
self.fig.canvas.draw()
self.fig.canvas.flush_events()
elif mode == "partial":
if self._steps == 1:
# fig, ax = plt.subplots()
# Add the patch to the Axes
try:
[plt.gca().add_patch(rect) for rect in self.patches]
except RuntimeError:
pass
# plt.pause(0.01)
if self._steps % 20 == 0 or self._steps in [1, 199] or self._is_collided:
# Arm
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k', alpha=self._steps / 200)
# ax.plot(line_points_in_taskspace[:, 0, 0],
# line_points_in_taskspace[:, 0, 1],
# line_points_in_taskspace[:, -1, 0],
# line_points_in_taskspace[:, -1, 1], marker='o', color='k', alpha=t / 200)
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k',
alpha=self._steps / 200)
lim = np.sum(self.link_lengths) + 0.5
plt.xlim([-lim, lim])
plt.ylim([-1.1, lim])
plt.pause(0.01)
def _set_patches(self):
if self.fig is not None:
self.fig.gca().patches = []
left_block = patches.Rectangle((-self.n_links, -self._tmp_hole_depth),
self.n_links + self._tmp_hole_x - self._tmp_hole_width / 2,
self._tmp_hole_depth,
fill=True, edgecolor='k', facecolor='k')
right_block = patches.Rectangle((self._tmp_hole_x + self._tmp_hole_width / 2, -self._tmp_hole_depth),
self.n_links - self._tmp_hole_x + self._tmp_hole_width / 2,
self._tmp_hole_depth,
fill=True, edgecolor='k', facecolor='k')
hole_floor = patches.Rectangle((self._tmp_hole_x - self._tmp_hole_width / 2, -self._tmp_hole_depth),
self._tmp_hole_width,
1 - self._tmp_hole_depth,
fill=True, edgecolor='k', facecolor='k')
elif mode == "final":
if self._steps == 199 or self._is_collided:
# fig, ax = plt.subplots()
# Add the patch to the Axes
self.fig.gca().add_patch(left_block)
self.fig.gca().add_patch(right_block)
self.fig.gca().add_patch(hole_floor)
# Add the patch to the Axes
[plt.gca().add_patch(rect) for rect in self.patches]
@property
def active_obs(self):
return np.hstack([
[self.random_start] * self.n_links, # cos
[self.random_start] * self.n_links, # sin
[self.random_start] * self.n_links, # velocity
[self._hole_width is None], # hole width
[self._hole_depth is None], # hole width
[True] * 2, # x-y coordinates of target distance
[False] # env steps
])
plt.xlim(-self.n_links, self.n_links), plt.ylim(-1, self.n_links)
# Arm
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
@property
def start_pos(self) -> Union[float, int, np.ndarray]:
return self._start_pos
plt.pause(0.01)
@property
def goal_pos(self) -> Union[float, int, np.ndarray]:
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
@property
def end_effector(self):
return self._joints[self.n_links].T
def close(self):
if self.fig is not None:
@ -281,22 +310,20 @@ class HoleReacher(gym.Env):
if __name__ == '__main__':
nl = 5
render_mode = "human" # "human" or "partial" or "final"
env = HoleReacher(n_links=nl, allow_self_collision=False, allow_wall_collision=False, hole_width=0.15,
hole_depth=1, hole_x=1)
env.reset()
# env.render(mode=render_mode)
env = HoleReacherEnv(n_links=nl, allow_self_collision=False, allow_wall_collision=False, hole_width=None,
hole_depth=1, hole_x=None)
obs = env.reset()
for i in range(200):
# objective.load_result("/tmp/cma")
# test with random actions
ac = 2 * env.action_space.sample()
# ac[0] += np.pi/2
obs, rew, d, info = env.step(ac)
env.render(mode=render_mode)
print(rew)
if d:
break
env.reset()
env.close()

View File

@ -1,42 +1,41 @@
import gym
from typing import Iterable, Union
import matplotlib.pyplot as plt
import numpy as np
from gym import spaces
from gym.utils import seeding
from alr_envs.utils.utils import angle_normalize
from alr_envs.utils.mps.mp_environments import MPEnv
# if os.environ.get("DISPLAY", None):
# mpl.use('Qt5Agg')
class SimpleReacherEnv(gym.Env):
class SimpleReacherEnv(MPEnv):
"""
Simple Reaching Task without any physics simulation.
Returns no reward until 150 time steps. This allows the agent to explore the space, but requires precise actions
towards the end of the trajectory.
"""
def __init__(self, n_links, random_start=True):
def __init__(self, n_links: int, target: Union[None, Iterable] = None, random_start: bool = True):
super().__init__()
self.link_lengths = np.ones(n_links)
self.n_links = n_links
self.dt = 0.01
self.dt = 0.1
self.random_start = random_start
self._goal = None
self._joints = None
self._joint_angle = None
self._joint_angles = None
self._angle_velocity = None
self._start_pos = None
self._start_pos = np.zeros(self.n_links)
self._start_vel = np.zeros(self.n_links)
self.max_torque = 1 # 10
self._target = target # provided target value
self._goal = None # updated goal value, does not change when target != None
self.max_torque = 1
self.steps_before_reward = 199
action_bound = np.ones((self.n_links,))
action_bound = np.ones((self.n_links,)) * self.max_torque
state_bound = np.hstack([
[np.pi] * self.n_links, # cos
[np.pi] * self.n_links, # sin
@ -47,45 +46,76 @@ class SimpleReacherEnv(gym.Env):
self.action_space = spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
self.observation_space = spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
self.fig = None
# containers for plotting
self.metadata = {'render.modes': ["human"]}
self.fig = None
self._steps = 0
self.seed()
def step(self, action: np.ndarray):
"""
A single step with action in torque space
"""
# action = self._add_action_noise(action)
# action = np.clip(action, -self.max_torque, self.max_torque)
vel = action
ac = np.clip(action, -self.max_torque, self.max_torque)
# self._angle_velocity = self._angle_velocity + self.dt * action
# self._joint_angle = angle_normalize(self._joint_angle + self.dt * self._angle_velocity)
self._angle_velocity = vel
self._joint_angle = self._joint_angle + self.dt * self._angle_velocity
self._angle_velocity = self._angle_velocity + self.dt * ac
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
self._update_joints()
self._steps += 1
reward, info = self._get_reward(action)
# done = np.abs(self.end_effector - self._goal_pos) < 0.1
self._steps += 1
done = False
return self._get_obs().copy(), reward, done, info
def _add_action_noise(self, action: np.ndarray):
"""
add unobserved Gaussian Noise N(0,0.01) to the actions
Args:
action:
def reset(self):
Returns: actions with noise
# TODO: maybe do initialisation more random?
# Sample only orientation of first link, i.e. the arm is always straight.
if self.random_start:
self._joint_angles = np.hstack([[self.np_random.uniform(-np.pi, np.pi)], np.zeros(self.n_links - 1)])
self._start_pos = self._joint_angles.copy()
else:
self._joint_angles = self._start_pos
self._generate_goal()
self._angle_velocity = self._start_vel
self._joints = np.zeros((self.n_links + 1, 2))
self._update_joints()
self._steps = 0
return self._get_obs().copy()
def _update_joints(self):
"""
update joints to get new end-effector position. The other links are only required for rendering.
Returns:
"""
return self.np_random.normal(0, 0.1, *action.shape) + action
angles = np.cumsum(self._joint_angles)
x = self.link_lengths * np.vstack([np.cos(angles), np.sin(angles)])
self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0)
def _get_reward(self, action: np.ndarray):
diff = self.end_effector - self._goal
reward_dist = 0
if self._steps >= self.steps_before_reward:
reward_dist -= np.linalg.norm(diff)
# reward_dist = np.exp(-0.1 * diff ** 2).mean()
# reward_dist = - (diff ** 2).mean()
reward_ctrl = (action ** 2).sum()
reward = reward_dist - reward_ctrl
return reward, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl)
def _get_obs(self):
theta = self._joint_angle
theta = self._joint_angles
return np.hstack([
np.cos(theta),
np.sin(theta),
@ -94,91 +124,108 @@ class SimpleReacherEnv(gym.Env):
self._steps
])
def _update_joints(self):
"""
update joints to get new end-effector position. The other links are only required for rendering.
Returns:
def _generate_goal(self):
"""
angles = np.cumsum(self._joint_angle)
x = self.link_lengths * np.vstack([np.cos(angles), np.sin(angles)])
self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0)
if self._target is None:
# center = self._joints[0]
# # Sample uniformly in circle with radius R around center of reacher.
# R = np.sum(self.link_lengths)
# r = R * np.sqrt(self.np_random.uniform())
# theta = self.np_random.uniform() * 2 * np.pi
# goal = center + r * np.stack([np.cos(theta), np.sin(theta)])
def _get_reward(self, action: np.ndarray):
diff = self.end_effector - self._goal
reward_dist = 0
# TODO: Is this the best option
if self._steps >= self.steps_before_reward:
reward_dist -= np.linalg.norm(diff)
# reward_dist = np.exp(-0.1 * diff ** 2).mean()
# reward_dist = - (diff ** 2).mean()
reward_ctrl = 1e-5 * (action ** 2).sum()
reward = reward_dist - reward_ctrl
return reward, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl)
def reset(self):
# TODO: maybe do initialisation more random?
# Sample only orientation of first link, i.e. the arm is always straight.
if self.random_start:
self._joint_angle = np.hstack([[self.np_random.uniform(-np.pi, np.pi)], np.zeros(self.n_links - 1)])
total_length = np.sum(self.link_lengths)
goal = np.array([total_length, total_length])
while np.linalg.norm(goal) >= total_length:
goal = self.np_random.uniform(low=-total_length, high=total_length, size=2)
else:
self._joint_angle = np.zeros(self.n_links)
goal = np.copy(self._target)
self._start_pos = self._joint_angle
self._angle_velocity = np.zeros(self.n_links)
self._joints = np.zeros((self.n_links + 1, 2))
self._update_joints()
self._steps = 0
self._goal = goal
self._goal = self._get_random_goal()
return self._get_obs().copy()
def render(self, mode='human'): # pragma: no cover
if self.fig is None:
# Create base figure once on the beginning. Afterwards only update
plt.ion()
self.fig = plt.figure()
ax = self.fig.add_subplot(1, 1, 1)
def _get_random_goal(self):
center = self._joints[0]
# limits
lim = np.sum(self.link_lengths) + 0.5
ax.set_xlim([-lim, lim])
ax.set_ylim([-lim, lim])
# Sample uniformly in circle with radius R around center of reacher.
R = np.sum(self.link_lengths)
r = R * np.sqrt(self.np_random.uniform())
theta = np.pi/2 + 0.001 * np.random.randn() # self.np_random.uniform() * 2 * np.pi
return center + r * np.stack([np.cos(theta), np.sin(theta)])
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
goal_pos = self._goal.T
self.goal_point, = ax.plot(goal_pos[0], goal_pos[1], 'gx')
self.goal_dist, = ax.plot([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]], 'g--')
self.fig.show()
self.fig.gca().set_title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
# goal
goal_pos = self._goal.T
if self._steps == 1:
self.goal_point.set_data(goal_pos[0], goal_pos[1])
# arm
self.line.set_data(self._joints[:, 0], self._joints[:, 1])
# distance between end effector and goal
self.goal_dist.set_data([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]])
self.fig.canvas.draw()
self.fig.canvas.flush_events()
@property
def active_obs(self):
return np.hstack([
[self.random_start] * self.n_links, # cos
[self.random_start] * self.n_links, # sin
[self.random_start] * self.n_links, # velocity
[True] * 2, # x-y coordinates of target distance
[False] # env steps
])
@property
def start_pos(self):
return self._start_pos
@property
def goal_pos(self):
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def render(self, mode='human'): # pragma: no cover
if self.fig is None:
self.fig = plt.figure()
plt.ion()
plt.show()
else:
plt.figure(self.fig.number)
plt.cla()
plt.title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
# Arm
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
# goal
goal_pos = self._goal.T
plt.plot(goal_pos[0], goal_pos[1], 'gx')
# distance between end effector and goal
plt.plot([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]], 'g--')
lim = np.sum(self.link_lengths) + 0.5
plt.xlim([-lim, lim])
plt.ylim([-lim, lim])
# plt.draw()
plt.pause(1e-4) # pushes window to foreground, which is annoying.
# self.fig.canvas.flush_events()
def close(self):
del self.fig
@property
def end_effector(self):
return self._joints[self.n_links].T
if __name__ == '__main__':
nl = 5
render_mode = "human" # "human" or "partial" or "final"
env = SimpleReacherEnv(n_links=nl)
obs = env.reset()
print("First", obs)
for i in range(2000):
# objective.load_result("/tmp/cma")
# test with random actions
ac = 2 * env.action_space.sample()
# ac = np.ones(env.action_space.shape)
obs, rew, d, info = env.step(ac)
env.render(mode=render_mode)
print(obs[env.active_obs].shape)
if d or i % 200 == 0:
env.reset()
env.close()

View File

@ -1,19 +1,31 @@
from typing import Iterable, Union
import gym
import matplotlib.pyplot as plt
import numpy as np
from gym.utils import seeding
from alr_envs.classic_control.utils import check_self_collision
from alr_envs.utils.mps.mp_environments import MPEnv
class ViaPointReacher(gym.Env):
class ViaPointReacher(MPEnv):
def __init__(self, n_links, allow_self_collision=False, collision_penalty=1000):
self.num_links = n_links
def __init__(self, n_links, random_start: bool = True, via_target: Union[None, Iterable] = None,
target: Union[None, Iterable] = None, allow_self_collision=False, collision_penalty=1000):
self.n_links = n_links
self.link_lengths = np.ones((n_links, 1))
# task
self.via_point = np.ones(2)
self.goal_point = np.array((n_links, 0))
self.random_start = random_start
# provided initial parameters
self._target = target # provided target value
self._via_target = via_target # provided via point target value
# temp container for current env state
self._via_point = np.ones(2)
self._goal = np.array((n_links, 0))
# collision
self.allow_self_collision = allow_self_collision
@ -23,78 +35,74 @@ class ViaPointReacher(gym.Env):
self._joints = None
self._joint_angles = None
self._angle_velocity = None
self.start_pos = np.hstack([[np.pi / 2], np.zeros(self.num_links - 1)])
self.start_vel = np.zeros(self.num_links)
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
self._start_vel = np.zeros(self.n_links)
self.weight_matrix_scale = 1
self._steps = 0
self.dt = 0.01
# self.time_limit = 2
action_bound = np.pi * np.ones((self.num_links,))
action_bound = np.pi * np.ones((self.n_links,))
state_bound = np.hstack([
[np.pi] * self.num_links, # cos
[np.pi] * self.num_links, # sin
[np.inf] * self.num_links, # velocity
[np.pi] * self.n_links, # cos
[np.pi] * self.n_links, # sin
[np.inf] * self.n_links, # velocity
[np.inf] * 2, # x-y coordinates of via point distance
[np.inf] * 2, # x-y coordinates of target distance
[np.inf] # env steps, because reward start after n steps TODO: Maybe
[np.inf] # env steps, because reward start after n steps
])
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
# containers for plotting
self.metadata = {'render.modes': ["human", "partial"]}
self.fig = None
@property
def end_effector(self):
return self._joints[self.num_links].T
def configure(self, context):
pass
def reset(self):
self._joint_angles = self.start_pos
self._angle_velocity = self.start_vel
self._joints = np.zeros((self.num_links + 1, 2))
self._update_joints()
self._steps = 0
return self._get_obs().copy()
self.seed()
def step(self, action: np.ndarray):
"""
a single step with an action in joint velocity space
"""
vel = action
acc = (vel - self._angle_velocity) / self.dt
self._angle_velocity = vel
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
self._update_joints()
dist_reward = 0
if not self._is_collided:
if self._steps == 100:
dist_reward = np.linalg.norm(self.end_effector - self.via_point)
elif self._steps == 199:
dist_reward = np.linalg.norm(self.end_effector - self.goal_point)
acc = (vel - self._angle_velocity) / self.dt
reward, info = self._get_reward(acc)
# TODO: Do we need that?
reward = - dist_reward ** 2
reward -= 5e-8 * np.sum(acc**2)
if self._is_collided:
reward -= self.collision_penalty
info = {"is_collided": self._is_collided}
info.update({"is_collided": self._is_collided})
self._steps += 1
# done = self._steps * self.dt > self.time_limit or self._is_collided
done = self._is_collided
return self._get_obs().copy(), reward, done, info
def reset(self):
if self.random_start:
# Maybe change more than dirst seed
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
self._start_pos = self._joint_angles.copy()
else:
self._joint_angles = self._start_pos
self._generate_goal()
self._angle_velocity = self._start_vel
self._joints = np.zeros((self.n_links + 1, 2))
self._update_joints()
self._steps = 0
return self._get_obs().copy()
def _generate_goal(self):
self._via_point = self.np_random.uniform(0.5, 3.5, 2) if self._via_target is None else np.copy(self._via_target)
self._goal = self.np_random.uniform(0.5, 0.1, 2) if self._target is None else np.copy(self._target)
# raise NotImplementedError("How to properly sample points??")
def _update_joints(self):
"""
update _joints to get new end effector position. The other links are only required for rendering.
@ -115,14 +123,38 @@ class ViaPointReacher(gym.Env):
self._is_collided = self_collision
def _get_reward(self, acc):
success = False
reward = -np.inf
if not self._is_collided:
dist = np.inf
# return intermediate reward for via point
if self._steps == 100:
dist = np.linalg.norm(self.end_effector - self._via_point)
# return reward in last time step for goal
elif self._steps == 199:
dist = np.linalg.norm(self.end_effector - self._goal)
success = dist < 0.005
else:
# Episode terminates when colliding, hence return reward
dist = np.linalg.norm(self.end_effector - self._goal)
reward = -self.collision_penalty
reward -= dist ** 2
reward -= 5e-8 * np.sum(acc ** 2)
info = {"is_success": success}
return reward, info
def _get_obs(self):
theta = self._joint_angles
return np.hstack([
np.cos(theta),
np.sin(theta),
self._angle_velocity,
self.end_effector - self.via_point,
self.end_effector - self.goal_point,
self.end_effector - self._via_point,
self.end_effector - self._goal,
self._steps
])
@ -133,7 +165,7 @@ class ViaPointReacher(gym.Env):
accumulated_theta = np.cumsum(theta, axis=0)
endeffector = np.zeros(shape=(self.num_links, num_points_per_link, 2))
endeffector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
@ -141,33 +173,46 @@ class ViaPointReacher(gym.Env):
endeffector[0, :, 0] = x[0, :]
endeffector[0, :, 1] = y[0, :]
for i in range(1, self.num_links):
for i in range(1, self.n_links):
endeffector[i, :, 0] = x[i, :] + endeffector[i - 1, -1, 0]
endeffector[i, :, 1] = y[i, :] + endeffector[i - 1, -1, 1]
return np.squeeze(endeffector + self._joints[0, :])
def render(self, mode='human'):
goal_pos = self._goal.T
via_pos = self._via_point.T
if self.fig is None:
# Create base figure once on the beginning. Afterwards only update
plt.ion()
self.fig = plt.figure()
# plt.ion()
# plt.pause(0.01)
else:
plt.figure(self.fig.number)
ax = self.fig.add_subplot(1, 1, 1)
# limits
lim = np.sum(self.link_lengths) + 0.5
ax.set_xlim([-lim, lim])
ax.set_ylim([-lim, lim])
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
self.goal_point_plot, = ax.plot(goal_pos[0], goal_pos[1], 'go')
self.via_point_plot, = ax.plot(via_pos[0], via_pos[1], 'gx')
self.fig.show()
self.fig.gca().set_title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
if mode == "human":
plt.cla()
plt.title(f"Iteration: {self._steps}")
# goal
if self._steps == 1:
self.goal_point_plot.set_data(goal_pos[0], goal_pos[1])
self.via_point_plot.set_data(via_pos[0], goal_pos[1])
# Arm
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
# arm
self.line.set_data(self._joints[:, 0], self._joints[:, 1])
lim = np.sum(self.link_lengths) + 0.5
plt.xlim([-lim, lim])
plt.ylim([-lim, lim])
# plt.draw()
plt.pause(1e-4) # pushes window to foreground, which is annoying.
# self.fig.canvas.flush_events()
self.fig.canvas.draw()
self.fig.canvas.flush_events()
elif mode == "partial":
if self._steps == 1:
@ -196,12 +241,39 @@ class ViaPointReacher(gym.Env):
# Add the patch to the Axes
[plt.gca().add_patch(rect) for rect in self.patches]
plt.xlim(-self.num_links, self.num_links), plt.ylim(-1, self.num_links)
plt.xlim(-self.n_links, self.n_links), plt.ylim(-1, self.n_links)
# Arm
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
plt.pause(0.01)
@property
def active_obs(self):
return np.hstack([
[self.random_start] * self.n_links, # cos
[self.random_start] * self.n_links, # sin
[self.random_start] * self.n_links, # velocity
[self._via_target is None] * 2, # x-y coordinates of via point distance
[True] * 2, # x-y coordinates of target distance
[False] # env steps
])
@property
def start_pos(self) -> Union[float, int, np.ndarray]:
return self._start_pos
@property
def goal_pos(self) -> Union[float, int, np.ndarray]:
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
@property
def end_effector(self):
return self._joints[self.n_links].T
def close(self):
if self.fig is not None:
plt.close(self.fig)

View File

@ -1,5 +1,5 @@
from alr_envs.utils.wrapper.detpmp_wrapper import DetPMPWrapper
from alr_envs.utils.wrapper.dmp_wrapper import DmpWrapper
from alr_envs.utils.mps.detpmp_wrapper import DetPMPWrapper
from alr_envs.utils.mps.dmp_wrapper import DmpWrapper
from alr_envs.mujoco.ball_in_a_cup.ball_in_a_cup import ALRBallInACupEnv
@ -17,19 +17,8 @@ def make_contextual_env(rank, seed=0):
def _init():
env = ALRBallInACupEnv(reward_type="contextual_goal")
env = DetPMPWrapper(env,
num_dof=7,
num_basis=5,
width=0.005,
policy_type="motor",
start_pos=env.start_pos,
duration=3.5,
post_traj_time=4.5,
dt=env.dt,
weights_scale=0.5,
zero_start=True,
zero_goal=True
)
env = DetPMPWrapper(env, num_dof=7, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
policy_type="motor", weights_scale=0.5, zero_start=True, zero_goal=True)
env.seed(seed + rank)
return env
@ -51,19 +40,8 @@ def make_env(rank, seed=0):
def _init():
env = ALRBallInACupEnv(reward_type="simple")
env = DetPMPWrapper(env,
num_dof=7,
num_basis=5,
width=0.005,
policy_type="motor",
start_pos=env.start_pos,
duration=3.5,
post_traj_time=4.5,
dt=env.dt,
weights_scale=0.2,
zero_start=True,
zero_goal=True
)
env = DetPMPWrapper(env, num_dof=7, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
policy_type="motor", weights_scale=0.2, zero_start=True, zero_goal=True)
env.seed(seed + rank)
return env
@ -85,20 +63,8 @@ def make_simple_env(rank, seed=0):
def _init():
env = ALRBallInACupEnv(reward_type="simple")
env = DetPMPWrapper(env,
num_dof=3,
num_basis=5,
width=0.005,
off=-0.1,
policy_type="motor",
start_pos=env.start_pos[1::2],
duration=3.5,
post_traj_time=4.5,
dt=env.dt,
weights_scale=0.25,
zero_start=True,
zero_goal=True
)
env = DetPMPWrapper(env, num_dof=3, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
policy_type="motor", weights_scale=0.25, zero_start=True, zero_goal=True, off=-0.1)
env.seed(seed + rank)
return env

View File

@ -1,4 +1,4 @@
from alr_envs.utils.wrapper.detpmp_wrapper import DetPMPWrapper
from alr_envs.utils.mps.detpmp_wrapper import DetPMPWrapper
from alr_envs.mujoco.beerpong.beerpong import ALRBeerpongEnv
from alr_envs.mujoco.beerpong.beerpong_simple import ALRBeerpongEnv as ALRBeerpongEnvSimple
@ -17,19 +17,8 @@ def make_contextual_env(rank, seed=0):
def _init():
env = ALRBeerpongEnv()
env = DetPMPWrapper(env,
num_dof=7,
num_basis=5,
width=0.005,
policy_type="motor",
start_pos=env.start_pos,
duration=3.5,
post_traj_time=4.5,
dt=env.dt,
weights_scale=0.5,
zero_start=True,
zero_goal=True
)
env = DetPMPWrapper(env, num_dof=7, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
policy_type="motor", weights_scale=0.5, zero_start=True, zero_goal=True)
env.seed(seed + rank)
return env
@ -51,19 +40,8 @@ def make_env(rank, seed=0):
def _init():
env = ALRBeerpongEnvSimple()
env = DetPMPWrapper(env,
num_dof=7,
num_basis=5,
width=0.005,
policy_type="motor",
start_pos=env.start_pos,
duration=3.5,
post_traj_time=4.5,
dt=env.dt,
weights_scale=0.25,
zero_start=True,
zero_goal=True
)
env = DetPMPWrapper(env, num_dof=7, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
policy_type="motor", weights_scale=0.25, zero_start=True, zero_goal=True)
env.seed(seed + rank)
return env
@ -85,19 +63,8 @@ def make_simple_env(rank, seed=0):
def _init():
env = ALRBeerpongEnvSimple()
env = DetPMPWrapper(env,
num_dof=3,
num_basis=5,
width=0.005,
policy_type="motor",
start_pos=env.start_pos[1::2],
duration=3.5,
post_traj_time=4.5,
dt=env.dt,
weights_scale=0.5,
zero_start=True,
zero_goal=True
)
env = DetPMPWrapper(env, num_dof=3, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
policy_type="motor", weights_scale=0.5, zero_start=True, zero_goal=True)
env.seed(seed + rank)
return env

View File

@ -1,7 +1,7 @@
import alr_envs.classic_control.hole_reacher as hr
import alr_envs.classic_control.viapoint_reacher as vpr
from alr_envs.utils.wrapper.dmp_wrapper import DmpWrapper
from alr_envs.utils.wrapper.detpmp_wrapper import DetPMPWrapper
from alr_envs.utils.mps.dmp_wrapper import DmpWrapper
from alr_envs.utils.mps.detpmp_wrapper import DetPMPWrapper
import numpy as np
@ -49,13 +49,13 @@ def make_holereacher_env(rank, seed=0):
"""
def _init():
_env = hr.HoleReacher(n_links=5,
allow_self_collision=False,
allow_wall_collision=False,
hole_width=0.25,
hole_depth=1,
hole_x=2,
collision_penalty=100)
_env = hr.HoleReacherEnv(n_links=5,
allow_self_collision=False,
allow_wall_collision=False,
hole_width=0.25,
hole_depth=1,
hole_x=2,
collision_penalty=100)
_env = DmpWrapper(_env,
num_dof=5,
@ -65,7 +65,7 @@ def make_holereacher_env(rank, seed=0):
dt=_env.dt,
learn_goal=True,
alpha_phase=2,
start_pos=_env.start_pos,
start_pos=_env._start_pos,
policy_type="velocity",
weights_scale=50,
goal_scale=0.1
@ -89,13 +89,13 @@ def make_holereacher_fix_goal_env(rank, seed=0):
"""
def _init():
_env = hr.HoleReacher(n_links=5,
allow_self_collision=False,
allow_wall_collision=False,
hole_width=0.15,
hole_depth=1,
hole_x=1,
collision_penalty=100)
_env = hr.HoleReacherEnv(n_links=5,
allow_self_collision=False,
allow_wall_collision=False,
hole_width=0.15,
hole_depth=1,
hole_x=1,
collision_penalty=100)
_env = DmpWrapper(_env,
num_dof=5,
@ -105,7 +105,7 @@ def make_holereacher_fix_goal_env(rank, seed=0):
learn_goal=False,
final_pos=np.array([2.02669572, -1.25966385, -1.51618198, -0.80946476, 0.02012344]),
alpha_phase=2,
start_pos=_env.start_pos,
start_pos=_env._start_pos,
policy_type="velocity",
weights_scale=50,
goal_scale=1
@ -129,27 +129,16 @@ def make_holereacher_env_pmp(rank, seed=0):
"""
def _init():
_env = hr.HoleReacher(n_links=5,
allow_self_collision=False,
allow_wall_collision=False,
hole_width=0.15,
hole_depth=1,
hole_x=1,
collision_penalty=1000)
_env = hr.HoleReacherEnv(n_links=5,
allow_self_collision=False,
allow_wall_collision=False,
hole_width=0.15,
hole_depth=1,
hole_x=1,
collision_penalty=1000)
_env = DetPMPWrapper(_env,
num_dof=5,
num_basis=5,
width=0.02,
policy_type="velocity",
start_pos=_env.start_pos,
duration=2,
post_traj_time=0,
dt=_env.dt,
weights_scale=0.2,
zero_start=True,
zero_goal=False
)
_env = DetPMPWrapper(_env, num_dof=5, num_basis=5, width=0.02, duration=2, dt=_env.dt, post_traj_time=0,
policy_type="velocity", weights_scale=0.2, zero_start=True, zero_goal=False)
_env.seed(seed + rank)
return _env

View File

@ -1,5 +1,5 @@
from alr_envs.utils.wrapper.dmp_wrapper import DmpWrapper
from alr_envs.utils.wrapper.detpmp_wrapper import DetPMPWrapper
from alr_envs.utils.mps.dmp_wrapper import DmpWrapper
from alr_envs.utils.mps.detpmp_wrapper import DetPMPWrapper
import gym
from gym.vector.utils import write_to_shared_memory
import sys

View File

@ -2,26 +2,27 @@ import gym
import numpy as np
from mp_lib import det_promp
from alr_envs.utils.wrapper.mp_wrapper import MPWrapper
from alr_envs.utils.mps.mp_environments import MPEnv
from alr_envs.utils.mps.mp_wrapper import MPWrapper
class DetPMPWrapper(MPWrapper):
def __init__(self, env, num_dof, num_basis, width, start_pos=None, duration=1, dt=0.01, post_traj_time=0.,
policy_type=None, weights_scale=1, zero_start=False, zero_goal=False, **mp_kwargs):
# self.duration = duration # seconds
def __init__(self, env: MPEnv, num_dof: int, num_basis: int, width: int, duration: int = 1, dt: float = 0.01,
post_traj_time: float = 0., policy_type: str = None, weights_scale: float = 1.,
zero_start: bool = False, zero_goal: bool = False, **mp_kwargs):
self.duration = duration # seconds
super().__init__(env, num_dof, duration, dt, post_traj_time, policy_type, weights_scale,
num_basis=num_basis, width=width, start_pos=start_pos, zero_start=zero_start,
zero_goal=zero_goal)
super().__init__(env, num_dof, dt, duration, post_traj_time, policy_type, weights_scale, num_basis=num_basis,
width=width, zero_start=zero_start, zero_goal=zero_goal, **mp_kwargs)
self.dt = dt
action_bounds = np.inf * np.ones((self.mp.n_basis * self.mp.n_dof))
self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32)
self.start_pos = start_pos
self.dt = dt
def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5, width: float = None,
start_pos: np.ndarray = None, zero_start: bool = False, zero_goal: bool = False):
zero_start: bool = False, zero_goal: bool = False):
pmp = det_promp.DeterministicProMP(n_basis=num_basis, n_dof=num_dof, width=width, off=0.01,
zero_start=zero_start, zero_goal=zero_goal)

View File

@ -1,19 +1,18 @@
from mp_lib.phase import ExpDecayPhaseGenerator
from mp_lib.basis import DMPBasisGenerator
from mp_lib import dmps
import numpy as np
import gym
import numpy as np
from mp_lib import dmps
from mp_lib.basis import DMPBasisGenerator
from mp_lib.phase import ExpDecayPhaseGenerator
from alr_envs.utils.wrapper.mp_wrapper import MPWrapper
from alr_envs.utils.mps.mp_environments import MPEnv
from alr_envs.utils.mps.mp_wrapper import MPWrapper
class DmpWrapper(MPWrapper):
def __init__(self, env: gym.Env, num_dof: int, num_basis: int,
# start_pos: np.ndarray = None,
# final_pos: np.ndarray = None,
def __init__(self, env: MPEnv, num_dof: int, num_basis: int,
duration: int = 1, alpha_phase: float = 2., dt: float = None,
learn_goal: bool = False, return_to_start: bool = False, post_traj_time: float = 0.,
learn_goal: bool = False, post_traj_time: float = 0.,
weights_scale: float = 1., goal_scale: float = 1., bandwidth_factor: float = 3.,
policy_type: str = None, render_mode: str = None):
@ -23,8 +22,6 @@ class DmpWrapper(MPWrapper):
env:
num_dof:
num_basis:
start_pos:
final_pos:
duration:
alpha_phase:
dt:
@ -37,30 +34,17 @@ class DmpWrapper(MPWrapper):
self.learn_goal = learn_goal
dt = env.dt if hasattr(env, "dt") else dt
assert dt is not None
# start_pos = start_pos if start_pos is not None else env.start_pos if hasattr(env, "start_pos") else None
# TODO: assert start_pos is not None # start_pos will be set in initialize, do we need this here?
# if learn_goal:
# final_pos = np.zeros_like(start_pos) # arbitrary, will be learned
# final_pos = np.zeros((1, num_dof)) # arbitrary, will be learned
# else:
# final_pos = final_pos if final_pos is not None else start_pos if return_to_start else None
# assert final_pos is not None
self.t = np.linspace(0, duration, int(duration / dt))
self.goal_scale = goal_scale
super().__init__(env, num_dof, duration, dt, post_traj_time, policy_type, weights_scale, render_mode,
num_basis=num_basis,
# start_pos=start_pos, final_pos=final_pos,
alpha_phase=alpha_phase,
bandwidth_factor=bandwidth_factor)
super().__init__(env, num_dof, dt, duration, post_traj_time, policy_type, weights_scale, render_mode,
num_basis=num_basis, alpha_phase=alpha_phase, bandwidth_factor=bandwidth_factor)
action_bounds = np.inf * np.ones((np.prod(self.mp.dmp_weights.shape) + (num_dof if learn_goal else 0)))
self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32)
def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5,
# start_pos: np.ndarray = None,
# final_pos: np.ndarray = None,
alpha_phase: float = 2., bandwidth_factor: float = 3.):
def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5, alpha_phase: float = 2.,
bandwidth_factor: int = 3):
phase_generator = ExpDecayPhaseGenerator(alpha_phase=alpha_phase, duration=duration)
basis_generator = DMPBasisGenerator(phase_generator, duration=duration, num_basis=num_basis,
@ -69,15 +53,6 @@ class DmpWrapper(MPWrapper):
dmp = dmps.DMP(num_dof=num_dof, basis_generator=basis_generator, phase_generator=phase_generator,
num_time_steps=int(duration / dt), dt=dt)
# dmp.dmp_start_pos = start_pos.reshape((1, num_dof))
# in a contextual environment, the start_pos may be not fixed, set in mp_rollout?
# TODO: Should we set start_pos in init at all? It's only used after calling rollout anyway...
# dmp.dmp_start_pos = start_pos.reshape((1, num_dof)) if start_pos is not None else np.zeros((1, num_dof))
# weights = np.zeros((num_basis, num_dof))
# goal_pos = np.zeros(num_dof) if self.learn_goal else final_pos
# dmp.set_weights(weights, goal_pos)
return dmp
def goal_and_weights(self, params):
@ -87,18 +62,15 @@ class DmpWrapper(MPWrapper):
if self.learn_goal:
goal_pos = params[0, -self.mp.num_dimensions:] # [num_dof]
params = params[:, :-self.mp.num_dimensions] # [1,num_dof]
# weight_matrix = np.reshape(params[:, :-self.num_dof], [self.num_basis, self.num_dof])
else:
goal_pos = self.env.goal_pos # self.mp.dmp_goal_pos.flatten()
goal_pos = self.env.goal_pos
assert goal_pos is not None
# weight_matrix = np.reshape(params, [self.num_basis, self.num_dof])
weight_matrix = np.reshape(params, self.mp.dmp_weights.shape)
weight_matrix = np.reshape(params, self.mp.dmp_weights.shape) # [num_basis, num_dof]
return goal_pos * self.goal_scale, weight_matrix * self.weights_scale
def mp_rollout(self, action):
# if self.mp.start_pos is None:
self.mp.dmp_start_pos = self.env.init_qpos.reshape((1, self.num_dof)) # start_pos
self.mp.dmp_start_pos = self.env.start_pos
goal_pos, weight_matrix = self.goal_and_weights(action)
self.mp.set_weights(weight_matrix, goal_pos)
return self.mp.reference_trajectory(self.t)

View File

@ -0,0 +1,33 @@
from abc import abstractmethod
from typing import Union
import gym
import numpy as np
class MPEnv(gym.Env):
@property
@abstractmethod
def active_obs(self):
"""Returns boolean value for each observation entry
whether the observation is returned by the DMP for the contextual case or not.
This effectively allows to filter unwanted or unnecessary observations from the full step-based case.
"""
raise NotImplementedError()
@property
@abstractmethod
def start_pos(self) -> Union[float, int, np.ndarray]:
"""
Returns the current position of the joints
"""
raise NotImplementedError()
@property
def goal_pos(self) -> Union[float, int, np.ndarray]:
"""
Returns the current final position of the joints for the MP.
By default this returns the starting position.
"""
return self.start_pos

View File

@ -1,32 +1,24 @@
from abc import ABC, abstractmethod
from collections import defaultdict
import gym
import numpy as np
from alr_envs.utils.mps.mp_environments import MPEnv
from alr_envs.utils.policies import get_policy_class
class MPWrapper(gym.Wrapper, ABC):
def __init__(self,
env: gym.Env,
num_dof: int,
duration: int = 1,
dt: float = None,
post_traj_time: float = 0.,
policy_type: str = None,
weights_scale: float = 1.,
render_mode: str = None,
**mp_kwargs
):
def __init__(self, env: MPEnv, num_dof: int, dt: float, duration: int = 1, post_traj_time: float = 0.,
policy_type: str = None, weights_scale: float = 1., render_mode: str = None, **mp_kwargs):
super().__init__(env)
self.num_dof = num_dof
# self.num_basis = num_basis
# self.duration = duration # seconds
# adjust observation space to reduce version
obs_sp = self.env.observation_space
self.observation_space = gym.spaces.Box(low=obs_sp.low[self.env.active_obs],
high=obs_sp.high[self.env.active_obs],
dtype=obs_sp.dtype)
# dt = env.dt if hasattr(env, "dt") else dt
assert dt is not None # this should never happen as MPWrapper is a base class
self.post_traj_steps = int(post_traj_time / dt)
@ -40,8 +32,11 @@ class MPWrapper(gym.Wrapper, ABC):
self.render_mode = render_mode
self.render_kwargs = {}
# TODO: not yet final
# TODO: @Max I think this should not be in this class, this functionality should be part of your sampler.
def __call__(self, params, contexts=None):
"""
Can be used to provide a batch of parameter sets
"""
params = np.atleast_2d(params)
obs = []
rewards = []
@ -50,7 +45,6 @@ class MPWrapper(gym.Wrapper, ABC):
# for p, c in zip(params, contexts):
for p in params:
# self.configure(c)
# context = self.reset()
ob, reward, done, info = self.step(p)
obs.append(ob)
rewards.append(reward)
@ -63,8 +57,7 @@ class MPWrapper(gym.Wrapper, ABC):
self.env.configure(context)
def reset(self):
obs = self.env.reset()
return obs
return self.env.reset()[self.env.active_obs]
def step(self, action: np.ndarray):
""" This function generates a trajectory based on a DMP and then does the usual loop over reset and step"""
@ -78,15 +71,9 @@ class MPWrapper(gym.Wrapper, ABC):
# self._velocity = velocity
rewards = 0
# infos = defaultdict(list)
# TODO: @Max Why do we need this configure, states should be part of the model
# TODO: Ask Onur if the context distribution needs to be outside the environment
# TODO: For now create a new env with each context
# TODO: Explicitly call reset before step to obtain context from obs?
# self.env.configure(context)
# obs = self.env.reset()
info = {}
# create random obs as the reset function is called externally
obs = self.env.observation_space.sample()
for t, pos_vel in enumerate(zip(trajectory, velocity)):
ac = self.policy.get_action(pos_vel[0], pos_vel[1])
@ -100,7 +87,7 @@ class MPWrapper(gym.Wrapper, ABC):
break
done = True
return obs, rewards, done, info
return obs[self.env.active_obs], rewards, done, info
def render(self, mode='human', **kwargs):
"""Only set render options here, such that they can be used during the rollout.
@ -108,18 +95,6 @@ class MPWrapper(gym.Wrapper, ABC):
self.render_mode = mode
self.render_kwargs = kwargs
# def __call__(self, actions):
# return self.step(actions)
# params = np.atleast_2d(params)
# rewards = []
# infos = []
# for p, c in zip(params, contexts):
# reward, info = self.rollout(p, c)
# rewards.append(reward)
# infos.append(info)
#
# return np.array(rewards), infos
@abstractmethod
def mp_rollout(self, action):
"""

View File

@ -46,7 +46,7 @@ def example_dmp():
obs = env.reset()
def example_async(n_cpu=4, seed=int('533D', 16)):
def example_async(env_id="alr_envs:HoleReacherDMP-v0", n_cpu=4, seed=int('533D', 16)):
def make_env(env_id, seed, rank):
env = gym.make(env_id)
env.seed(seed + rank)
@ -73,7 +73,7 @@ def example_async(n_cpu=4, seed=int('533D', 16)):
# do not return values above threshold
return (*map(lambda v: np.stack(v)[:n_samples], vals.values()),)
envs = gym.vector.AsyncVectorEnv([make_env("alr_envs:HoleReacherDMP-v0", seed, i) for i in range(n_cpu)])
envs = gym.vector.AsyncVectorEnv([make_env(env_id, seed, i) for i in range(n_cpu)])
obs = envs.reset()
print(sample(envs, 16))
@ -82,7 +82,6 @@ def example_async(n_cpu=4, seed=int('533D', 16)):
if __name__ == '__main__':
# example_mujoco()
# example_dmp()
# example_async()
env = gym.make("alr_envs:HoleReacherDMP-v0")
# env = gym.make("alr_envs:SimpleReacherDMP-v1")
print()
example_async("alr_envs:LongSimpleReacherDMP-v0", 4)
# env = gym.make("alr_envs:HoleReacherDMP-v0", context=0.1)
# env = gym.make("alr_envs:HoleReacherDMP-v1")