prepare HJ for PPO

This commit is contained in:
Onur 2022-06-05 15:11:07 +02:00
parent 719b40c4e4
commit c47845c0dd
3 changed files with 29 additions and 18 deletions

View File

@ -974,7 +974,7 @@ register(
entry_point='alr_envs.utils.make_env_helpers:make_mp_env_helper', entry_point='alr_envs.utils.make_env_helpers:make_mp_env_helper',
kwargs={ kwargs={
"name": f"alr_envs:ALRHopperJump-v3", "name": f"alr_envs:ALRHopperJump-v3",
"wrappers": [mujoco.hopper_jump.NewMPWrapper], "wrappers": [mujoco.hopper_jump.NewHighCtxtMPWrapper],
"ep_wrapper_kwargs": { "ep_wrapper_kwargs": {
"weight_scale": 1 "weight_scale": 1
}, },
@ -1010,7 +1010,7 @@ register(
entry_point='alr_envs.utils.make_env_helpers:make_mp_env_helper', entry_point='alr_envs.utils.make_env_helpers:make_mp_env_helper',
kwargs={ kwargs={
"name": f"alr_envs:ALRHopperJump-v4", "name": f"alr_envs:ALRHopperJump-v4",
"wrappers": [mujoco.hopper_jump.NewMPWrapper], "wrappers": [mujoco.hopper_jump.NewHighCtxtMPWrapper],
"ep_wrapper_kwargs": { "ep_wrapper_kwargs": {
"weight_scale": 1 "weight_scale": 1
}, },

View File

@ -11,7 +11,7 @@ class ALRHopperJumpEnv(HopperEnv):
- healthy_reward: 1.0 -> 0.1 -> 0 - healthy_reward: 1.0 -> 0.1 -> 0
- healthy_angle_range: (-0.2, 0.2) -> (-float('inf'), float('inf')) - healthy_angle_range: (-0.2, 0.2) -> (-float('inf'), float('inf'))
- healthy_z_range: (0.7, float('inf')) -> (0.5, float('inf')) - healthy_z_range: (0.7, float('inf')) -> (0.5, float('inf'))
- exclude current positions from observatiosn is set to False
""" """
def __init__(self, def __init__(self,
@ -26,7 +26,7 @@ class ALRHopperJumpEnv(HopperEnv):
healthy_z_range=(0.5, float('inf')), healthy_z_range=(0.5, float('inf')),
healthy_angle_range=(-float('inf'), float('inf')), healthy_angle_range=(-float('inf'), float('inf')),
reset_noise_scale=5e-3, reset_noise_scale=5e-3,
exclude_current_positions_from_observation=True, exclude_current_positions_from_observation=False,
max_episode_steps=250): max_episode_steps=250):
self.current_step = 0 self.current_step = 0
self.max_height = 0 self.max_height = 0
@ -90,7 +90,7 @@ class ALRHopperJumpEnv(HopperEnv):
return np.append(super()._get_obs(), self.goal) return np.append(super()._get_obs(), self.goal)
def reset(self): def reset(self):
self.goal = np.random.uniform(1.4, 2.16, 1) # 1.3 2.3 self.goal = self.np_random.uniform(1.4, 2.16, 1)[0] # 1.3 2.3
self.max_height = 0 self.max_height = 0
self.current_step = 0 self.current_step = 0
return super().reset() return super().reset()
@ -149,12 +149,12 @@ class ALRHopperXYJumpEnv(ALRHopperJumpEnv):
if self.contact_dist is None and self.contact_with_floor: if self.contact_dist is None and self.contact_with_floor:
self.contact_dist = np.linalg.norm(self.sim.data.site_xpos[self.model.site_name2id('foot_site')] self.contact_dist = np.linalg.norm(self.sim.data.site_xpos[self.model.site_name2id('foot_site')]
- np.array([self.goal, 0, 0], dtype=object))[0] - np.array([self.goal, 0, 0]))
ctrl_cost = self.control_cost(action) ctrl_cost = self.control_cost(action)
costs = ctrl_cost costs = ctrl_cost
done = False done = False
goal_dist = np.atleast_1d(np.linalg.norm(site_pos_after - np.array([self.goal, 0, 0], dtype=object)))[0] goal_dist = np.linalg.norm(site_pos_after - np.array([self.goal, 0, 0]))
rewards = 0 rewards = 0
if self.current_step >= self.max_episode_steps: if self.current_step >= self.max_episode_steps:
# healthy_reward = 0 if self.context else self.healthy_reward * self.current_step # healthy_reward = 0 if self.context else self.healthy_reward * self.current_step
@ -210,10 +210,14 @@ class ALRHopperXYJumpEnv(ALRHopperJumpEnv):
# self.goal = np.random.uniform(-1.5, 1.5, 1) # self.goal = np.random.uniform(-1.5, 1.5, 1)
# self.goal = np.random.uniform(0, 1.5, 1) # self.goal = np.random.uniform(0, 1.5, 1)
# self.goal = self.np_random.uniform(0, 1.5, 1) # self.goal = self.np_random.uniform(0, 1.5, 1)
self.goal = self.np_random.uniform(0.3, 1.35, 1) self.goal = self.np_random.uniform(0.3, 1.35, 1)[0]
self.sim.model.body_pos[self.sim.model.body_name2id('goal_site_body')] = np.array([self.goal, 0, 0], dtype=object) self.sim.model.body_pos[self.sim.model.body_name2id('goal_site_body')] = np.array([self.goal, 0, 0])
return self.reset_model() return self.reset_model()
def _get_obs(self):
goal_diff = self.sim.data.site_xpos[self.model.site_name2id('foot_site')].copy() \
- np.array([self.goal, 0, 0])
return np.concatenate((super(ALRHopperXYJumpEnv, self)._get_obs(), goal_diff))
class ALRHopperXYJumpEnvStepBased(ALRHopperXYJumpEnv): class ALRHopperXYJumpEnvStepBased(ALRHopperXYJumpEnv):
@ -229,7 +233,7 @@ class ALRHopperXYJumpEnvStepBased(ALRHopperXYJumpEnv):
healthy_z_range=(0.5, float('inf')), healthy_z_range=(0.5, float('inf')),
healthy_angle_range=(-float('inf'), float('inf')), healthy_angle_range=(-float('inf'), float('inf')),
reset_noise_scale=5e-3, reset_noise_scale=5e-3,
exclude_current_positions_from_observation=True, exclude_current_positions_from_observation=False,
max_episode_steps=250, max_episode_steps=250,
height_scale = 10, height_scale = 10,
dist_scale = 3, dist_scale = 3,
@ -242,7 +246,10 @@ class ALRHopperXYJumpEnvStepBased(ALRHopperXYJumpEnv):
reset_noise_scale, exclude_current_positions_from_observation, max_episode_steps) reset_noise_scale, exclude_current_positions_from_observation, max_episode_steps)
def step(self, action): def step(self, action):
print("")
print('height_scale: ', self.height_scale)
print('healthy_scale: ', self.healthy_scale)
print('dist_scale: ', self.dist_scale)
self._floor_geom_id = self.model.geom_name2id('floor') self._floor_geom_id = self.model.geom_name2id('floor')
self._foot_geom_id = self.model.geom_name2id('foot_geom') self._foot_geom_id = self.model.geom_name2id('foot_geom')
@ -348,7 +355,9 @@ if __name__ == '__main__':
render_mode = "human" # "human" or "partial" or "final" render_mode = "human" # "human" or "partial" or "final"
# env = ALRHopperJumpEnv() # env = ALRHopperJumpEnv()
# env = ALRHopperXYJumpEnv() # env = ALRHopperXYJumpEnv()
np.random.seed(0)
env = ALRHopperXYJumpEnvStepBased() env = ALRHopperXYJumpEnvStepBased()
env.seed(0)
# env = ALRHopperJumpRndmPosEnv() # env = ALRHopperJumpRndmPosEnv()
obs = env.reset() obs = env.reset()

View File

@ -23,17 +23,19 @@ class NewMPWrapper(EpisodicWrapper):
# Random x goal + random init pos # Random x goal + random init pos
def set_active_obs(self): def set_active_obs(self):
return np.hstack([ return np.hstack([
[False] * (2 + int(not self.env.exclude_current_positions_from_observation)), # position [False] * (2 + int(not self.env.exclude_current_positions_from_observation)), # position
[True] * 3, # set to true if randomize initial pos [True] * 3, # set to true if randomize initial pos
[False] * 6, # velocity [False] * 6, # velocity
[True] [True]
]) ])
class NewHighCtxtMPWrapper(NewMPWrapper): class NewHighCtxtMPWrapper(NewMPWrapper):
def set_active_obs(self): def set_active_obs(self):
return np.hstack([ return np.hstack([
[True] * (5 + int(not self.env.exclude_current_positions_from_observation)), # position [False] * (2 + int(not self.env.exclude_current_positions_from_observation)), # position
[True] * 3, # set to true if randomize initial pos
[False] * 6, # velocity [False] * 6, # velocity
[False] [True], # goal
[False] * 3 # goal diff
]) ])