Merge remote-tracking branch 'origin/dmc_integration' into dmc_integration
# Conflicts: # README.md # alr_envs/__init__.py # setup.py
This commit is contained in:
commit
f5fcbf7f54
40
README.md
40
README.md
@ -1,12 +1,11 @@
|
||||
## ALR Environments
|
||||
## ALR Robotics Control Environments
|
||||
|
||||
This repository collects custom Robotics environments not included in benchmark suites like OpenAI gym, rllab, etc.
|
||||
Creating a custom (Mujoco) gym environment can be done according to [this guide](https://github.com/openai/gym/blob/master/docs/creating-environments.md).
|
||||
For stochastic search problems with gym interface use the `Rosenbrock-v0` reference implementation.
|
||||
We also support to solve environments with DMPs. When adding new DMP tasks check the `ViaPointReacherDMP-v0` reference implementation.
|
||||
When simply using the tasks, you can also leverage the wrapper class `DmpWrapper` to turn normal gym environments in to DMP tasks.
|
||||
We also support to solve environments with Dynamic Movement Primitives (DMPs) and Probabilistic Movement Primitives (DetPMP, we only consider the mean usually).
|
||||
|
||||
## Environments
|
||||
## Step-based Environments
|
||||
Currently we have the following environments:
|
||||
|
||||
### Mujoco
|
||||
@ -32,11 +31,13 @@ Currently we have the following environments:
|
||||
|`ViaPointReacher-v0`| Simple reaching task leveraging a via point, which supports self collision detection. Provides a reward only at 100 and 199 for reaching the viapoint and goal point, respectively.| 200 | 5 | 18
|
||||
|`HoleReacher-v0`| 5 link reaching task where the end-effector needs to reach into a narrow hole without collding with itself or walls | 200 | 5 | 18
|
||||
|
||||
### DMP Environments
|
||||
These environments are closer to stochastic search. They always execute a full trajectory, which is computed by a DMP and executed by a controller, e.g. a PD controller.
|
||||
The goal is to learn the parameters of this DMP to generate a suitable trajectory.
|
||||
All environments provide the full episode reward and additional information about early terminations, e.g. due to collisions.
|
||||
## Motion Primitive Environments (Episodic environments)
|
||||
Unlike step-based environments, these motion primitive (MP) environments are closer to stochastic search and what can be found in robotics. They always execute a full trajectory, which is computed by a Dynamic Motion Primitive (DMP) or Probabilitic Motion Primitive (DetPMP) and translated into individual actions with a controller, e.g. a PD controller. The actual Controller, however, depends on the type of environment, i.e. position, velocity, or torque controlled.
|
||||
The goal is to learn the parametrization of the motion primitives in order to generate a suitable trajectory.
|
||||
MP This can also be done in a contextual setting, where all changing elements of the task are exposed once in the beginning. This requires to find a new parametrization for each trajectory.
|
||||
All environments provide the full cumulative episode reward and additional information about early terminations, e.g. due to collisions.
|
||||
|
||||
### Classic Control
|
||||
|Name| Description|Horizon|Action Dimension|Context Dimension
|
||||
|---|---|---|---|---|
|
||||
|`ViaPointReacherDMP-v0`| A DMP provides a trajectory for the `ViaPointReacher-v0` task. | 200 | 25
|
||||
@ -48,6 +49,29 @@ All environments provide the full episode reward and additional information abou
|
||||
|
||||
[//]: |`HoleReacherDetPMP-v0`|
|
||||
|
||||
### OpenAI gym Environments
|
||||
These environments are wrapped-versions of their OpenAI-gym counterparts.
|
||||
|
||||
|Name| Description|Trajectory Horizon|Action Dimension|Context Dimension
|
||||
|---|---|---|---|---|
|
||||
|`ContinuousMountainCarDetPMP-v0`| A DetPmP wrapped version of the ContinuousMountainCar-v0 environment. | 100 | 1
|
||||
|`ReacherDetPMP-v2`| A DetPmP wrapped version of the Reacher-v2 environment. | 50 | 2
|
||||
|`FetchSlideDenseDetPMP-v1`| A DetPmP wrapped version of the FetchSlideDense-v1 environment. | 50 | 4
|
||||
|`FetchReachDenseDetPMP-v1`| A DetPmP wrapped version of the FetchReachDense-v1 environment. | 50 | 4
|
||||
|
||||
### Deep Mind Control Suite Environments
|
||||
These environments are wrapped-versions of their Deep Mind Control Suite (DMC) counterparts.
|
||||
Given most task can be solved in shorter horizon lengths than the original 1000 steps, we often shorten the episodes for those task.
|
||||
|
||||
|Name| Description|Trajectory Horizon|Action Dimension|Context Dimension
|
||||
|---|---|---|---|---|
|
||||
|`dmc_ball_in_cup-catch_detpmp-v0`| A DetPmP wrapped version of the "catch" task for the "ball_in_cup" environment. | 50 | 10 | 2
|
||||
|`dmc_ball_in_cup-catch_dmp-v0`| A DMP wrapped version of the "catch" task for the "ball_in_cup" environment. | 50| 10 | 2
|
||||
|`dmc_reacher-easy_detpmp-v0`| A DetPmP wrapped version of the "easy" task for the "reacher" environment. | 1000 | 10 | 4
|
||||
|`dmc_reacher-easy_dmp-v0`| A DMP wrapped version of the "easy" task for the "reacher" environment. | 1000| 10 | 4
|
||||
|`dmc_reacher-hard_detpmp-v0`| A DetPmP wrapped version of the "hard" task for the "reacher" environment.| 1000 | 10 | 4
|
||||
|`dmc_reacher-hard_dmp-v0`| A DMP wrapped version of the "hard" task for the "reacher" environment. | 1000 | 10 | 4
|
||||
|
||||
## Install
|
||||
1. Clone the repository
|
||||
```bash
|
||||
|
@ -8,6 +8,7 @@ from alr_envs.dmc.manipulation.reach.reach_mp_wrapper import DMCReachSiteMPWrapp
|
||||
from alr_envs.dmc.suite.ball_in_cup.ball_in_cup_mp_wrapper import DMCBallInCupMPWrapper
|
||||
from alr_envs.dmc.suite.cartpole.cartpole_mp_wrapper import DMCCartpoleMPWrapper, DMCCartpoleThreePolesMPWrapper, \
|
||||
DMCCartpoleTwoPolesMPWrapper
|
||||
from alr_envs.open_ai import reacher_v2, continuous_mountain_car, fetch
|
||||
from alr_envs.dmc.suite.reacher.reacher_mp_wrapper import DMCReacherMPWrapper
|
||||
|
||||
# Mujoco
|
||||
@ -790,3 +791,80 @@ register(
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
## Open AI
|
||||
register(
|
||||
id='ContinuousMountainCarDetPMP-v0',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
|
||||
kwargs={
|
||||
"name": "gym.envs.classic_control:MountainCarContinuous-v0",
|
||||
"wrappers": [continuous_mountain_car.MPWrapper],
|
||||
"mp_kwargs": {
|
||||
"num_dof": 1,
|
||||
"num_basis": 4,
|
||||
"duration": 2,
|
||||
"post_traj_time": 0,
|
||||
"width": 0.02,
|
||||
"policy_type": "motor",
|
||||
"policy_kwargs": {
|
||||
"p_gains": 1.,
|
||||
"d_gains": 1.
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='ReacherDetPMP-v2',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
|
||||
kwargs={
|
||||
"name": "gym.envs.mujoco:Reacher-v2",
|
||||
"wrappers": [reacher_v2.MPWrapper],
|
||||
"mp_kwargs": {
|
||||
"num_dof": 2,
|
||||
"num_basis": 6,
|
||||
"duration": 1,
|
||||
"post_traj_time": 0,
|
||||
"width": 0.02,
|
||||
"policy_type": "motor",
|
||||
"policy_kwargs": {
|
||||
"p_gains": .6,
|
||||
"d_gains": .075
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='FetchSlideDenseDetPMP-v1',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
|
||||
kwargs={
|
||||
"name": "gym.envs.robotics:FetchSlideDense-v1",
|
||||
"wrappers": [fetch.MPWrapper],
|
||||
"mp_kwargs": {
|
||||
"num_dof": 4,
|
||||
"num_basis": 5,
|
||||
"duration": 2,
|
||||
"post_traj_time": 0,
|
||||
"width": 0.02,
|
||||
"policy_type": "position"
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='FetchReachDenseDetPMP-v1',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_detpmp_env_helper',
|
||||
kwargs={
|
||||
"name": "gym.envs.robotics:FetchReachDense-v1",
|
||||
"wrappers": [fetch.MPWrapper],
|
||||
"mp_kwargs": {
|
||||
"num_dof": 4,
|
||||
"num_basis": 5,
|
||||
"duration": 2,
|
||||
"post_traj_time": 0,
|
||||
"width": 0.02,
|
||||
"policy_type": "position"
|
||||
}
|
||||
}
|
||||
)
|
||||
|
41
alr_envs/examples/examples_open_ai.py
Normal file
41
alr_envs/examples/examples_open_ai.py
Normal file
@ -0,0 +1,41 @@
|
||||
from alr_envs.utils.make_env_helpers import make_env
|
||||
|
||||
|
||||
def example_mp(env_name, seed=1):
|
||||
"""
|
||||
Example for running a motion primitive based version of a OpenAI-gym environment, which is already registered.
|
||||
For more information on motion primitive specific stuff, look at the mp examples.
|
||||
Args:
|
||||
env_name: DetPMP env_id
|
||||
seed: seed
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
# While in this case gym.make() is possible to use as well, we recommend our custom make env function.
|
||||
env = make_env(env_name, seed)
|
||||
|
||||
rewards = 0
|
||||
obs = env.reset()
|
||||
|
||||
# number of samples/full trajectories (multiple environment steps)
|
||||
for i in range(10):
|
||||
ac = env.action_space.sample()
|
||||
obs, reward, done, info = env.step(ac)
|
||||
rewards += reward
|
||||
|
||||
if done:
|
||||
print(rewards)
|
||||
rewards = 0
|
||||
obs = env.reset()
|
||||
|
||||
if __name__ == '__main__':
|
||||
# DMP - not supported yet
|
||||
#example_mp("ReacherDetPMP-v2")
|
||||
|
||||
# DetProMP
|
||||
example_mp("ContinuousMountainCarDetPMP-v0")
|
||||
example_mp("ReacherDetPMP-v2")
|
||||
example_mp("FetchReachDenseDetPMP-v1")
|
||||
example_mp("FetchSlideDenseDetPMP-v1")
|
||||
|
0
alr_envs/open_ai/__init__.py
Normal file
0
alr_envs/open_ai/__init__.py
Normal file
1
alr_envs/open_ai/continuous_mountain_car/__init__.py
Normal file
1
alr_envs/open_ai/continuous_mountain_car/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from alr_envs.open_ai.continuous_mountain_car.mp_wrapper import MPWrapper
|
22
alr_envs/open_ai/continuous_mountain_car/mp_wrapper.py
Normal file
22
alr_envs/open_ai/continuous_mountain_car/mp_wrapper.py
Normal file
@ -0,0 +1,22 @@
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
from mp_env_api.interface_wrappers.mp_env_wrapper import MPEnvWrapper
|
||||
|
||||
|
||||
class MPWrapper(MPEnvWrapper):
|
||||
@property
|
||||
def current_vel(self) -> Union[float, int, np.ndarray]:
|
||||
return np.array([self.state[1]])
|
||||
|
||||
@property
|
||||
def current_pos(self) -> Union[float, int, np.ndarray]:
|
||||
return np.array([self.state[0]])
|
||||
|
||||
@property
|
||||
def goal_pos(self):
|
||||
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
|
||||
|
||||
@property
|
||||
def dt(self) -> Union[float, int]:
|
||||
return 0.02
|
1
alr_envs/open_ai/fetch/__init__.py
Normal file
1
alr_envs/open_ai/fetch/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from alr_envs.open_ai.fetch.mp_wrapper import MPWrapper
|
22
alr_envs/open_ai/fetch/mp_wrapper.py
Normal file
22
alr_envs/open_ai/fetch/mp_wrapper.py
Normal file
@ -0,0 +1,22 @@
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
from mp_env_api.interface_wrappers.mp_env_wrapper import MPEnvWrapper
|
||||
|
||||
|
||||
class MPWrapper(MPEnvWrapper):
|
||||
@property
|
||||
def current_vel(self) -> Union[float, int, np.ndarray]:
|
||||
return self.unwrapped._get_obs()["observation"][-5:-1]
|
||||
|
||||
@property
|
||||
def current_pos(self) -> Union[float, int, np.ndarray]:
|
||||
return self.unwrapped._get_obs()["observation"][:4]
|
||||
|
||||
@property
|
||||
def goal_pos(self):
|
||||
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
|
||||
|
||||
@property
|
||||
def dt(self) -> Union[float, int]:
|
||||
return self.env.dt
|
1
alr_envs/open_ai/reacher_v2/__init__.py
Normal file
1
alr_envs/open_ai/reacher_v2/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from alr_envs.open_ai.reacher_v2.mp_wrapper import MPWrapper
|
19
alr_envs/open_ai/reacher_v2/mp_wrapper.py
Normal file
19
alr_envs/open_ai/reacher_v2/mp_wrapper.py
Normal file
@ -0,0 +1,19 @@
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
from mp_env_api.interface_wrappers.mp_env_wrapper import MPEnvWrapper
|
||||
|
||||
|
||||
class MPWrapper(MPEnvWrapper):
|
||||
|
||||
@property
|
||||
def current_vel(self) -> Union[float, int, np.ndarray]:
|
||||
return self.sim.data.qvel[:2]
|
||||
|
||||
@property
|
||||
def current_pos(self) -> Union[float, int, np.ndarray]:
|
||||
return self.sim.data.qpos[:2]
|
||||
|
||||
@property
|
||||
def dt(self) -> Union[float, int]:
|
||||
return self.env.dt
|
@ -1,10 +0,0 @@
|
||||
Metadata-Version: 1.0
|
||||
Name: reacher
|
||||
Version: 0.0.1
|
||||
Summary: UNKNOWN
|
||||
Home-page: UNKNOWN
|
||||
Author: UNKNOWN
|
||||
Author-email: UNKNOWN
|
||||
License: UNKNOWN
|
||||
Description: UNKNOWN
|
||||
Platform: UNKNOWN
|
@ -1,7 +0,0 @@
|
||||
README.md
|
||||
setup.py
|
||||
reacher.egg-info/PKG-INFO
|
||||
reacher.egg-info/SOURCES.txt
|
||||
reacher.egg-info/dependency_links.txt
|
||||
reacher.egg-info/requires.txt
|
||||
reacher.egg-info/top_level.txt
|
@ -1 +0,0 @@
|
||||
|
@ -1 +0,0 @@
|
||||
gym
|
@ -1 +0,0 @@
|
||||
|
7
setup.py
7
setup.py
@ -3,14 +3,15 @@ from setuptools import setup
|
||||
setup(
|
||||
name='alr_envs',
|
||||
version='0.0.1',
|
||||
packages=['alr_envs', 'alr_envs.classic_control', 'alr_envs.mujoco', 'alr_envs.stochastic_search',
|
||||
packages=['alr_envs', 'alr_envs.classic_control', 'alr_envs.open_ai', 'alr_envs.mujoco', 'alr_envs.stochastic_search',
|
||||
'alr_envs.utils'],
|
||||
install_requires=[
|
||||
'gym',
|
||||
'PyQt5',
|
||||
'matplotlib',
|
||||
# 'mp_env_api @ git+ssh://git@github.com/ALRhub/motion_primitive_env_api.git',
|
||||
'mujoco_py'
|
||||
'mp_env_api @ git+ssh://git@github.com/ALRhub/motion_primitive_env_api.git',
|
||||
'mujoco-py<2.1,>=2.0',
|
||||
'dm_control'
|
||||
],
|
||||
|
||||
url='https://github.com/ALRhub/alr_envs/',
|
||||
|
Loading…
Reference in New Issue
Block a user