fancy_gym/README.md

88 lines
4.4 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<h1 align="center">
<br>
<img src='https://raw.githubusercontent.com/ALRhub/fancy_gym/master/icon.svg' width="250px">
<br><br>
<b>Fancy Gym</b>
<br><br>
</h1>
Built upon the foundation of [Gymnasium](https://gymnasium.farama.org) (a maintained fork of OpenAIs renowned Gym library) `fancy_gym` offers a comprehensive collection of reinforcement learning environments.
**Key Features**:
- **New Challenging Environments**: `fancy_gym` includes several new environments ([Panda Box Pushing](https://dominik-roth.eu/fancy/envs/fancy/mujoco.html#box-pushing), [Table Tennis](https://dominik-roth.eu/fancy/envs/fancy/mujoco.html#table-tennis), [etc.](https://dominik-roth.eu/fancy/envs/fancy/index.html)) that present a higher degree of difficulty, pushing the boundaries of reinforcement learning research.
- **Support for Movement Primitives**: `fancy_gym` supports a range of movement primitives (MPs), including Dynamic Movement Primitives (DMPs), Probabilistic Movement Primitives (ProMP), and Probabilistic Dynamic Movement Primitives (ProDMP).
- **Upgrade to Movement Primitives**: With our framework, its straightforward to transform standard Gymnasium environments into environments that support movement primitives.
- **Benchmark Suite Compatibility**: `fancy_gym` makes it easy to access renowned benchmark suites such as [DeepMind Control](dominik-roth.eu/fancy/envs/dmc.html)
and [Metaworld](https://dominik-roth.eu/fancy/envs/meta.html), whether you want to use them in the regular step-based setting or using MPs.
- **Contribute Your Own Environments**: If youre inspired to create custom gym environments, both step-based and with movement primitives, this [guide](https://dominik-roth.eu/fancy/guide/upgrading_envs.html) will assist you. We encourage and highly appreciate submissions via PRs to integrate these environments into `fancy_gym`.
## Quickstart Guide
| &#x26A0; We recommend installing `fancy_gym` into a virtual environment as provided by [venv](https://docs.python.org/3/library/venv.html), [Poetry](https://python-poetry.org/) or [Conda](https://docs.conda.io/en/latest/). |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
Install via pip [or use an alternative installation method](https://dominik-roth.eu/fancy/guide/installation.html)
```bash
pip install 'fancy_gym[all]'
```
Try out one of our step-based environments [or explore our other envs](https://dominik-roth.eu/fancy/envs/fancy/index.html)
```python
import gymnasium as gym
import fancy_gym
import time
env = gym.make('fancy/BoxPushingDense-v0', render_mode='human')
observation = env.reset()
env.render()
for i in range(1000):
action = env.action_space.sample() # Randomly sample an action
observation, reward, terminated, truncated, info = env.step(action)
time.sleep(1/env.metadata['render_fps'])
if terminated or truncated:
observation, info = env.reset()
```
Explore the MP-based variant [or learn more about Movement Primitives (MPs)](https://dominik-roth.eu/fancy/guide/episodic_rl.html)
```python
import gymnasium as gym
import fancy_gym
env = gym.make('fancy_ProMP/BoxPushingDense-v0', render_mode='human')
env.reset()
env.render()
for i in range(10):
action = env.action_space.sample() # Randomly sample MP parameters
observation, reward, terminated, truncated, info = env.step(action) # Will execute full trajectory, based on MP
observation = env.reset()
```
## Documentation
Documentation for `fancy_gym` can be found [here](https://dominik-roth.eu/fancy); Usage Examples can be found [here](https://dominik-roth.eu/fancy/examples/general.html).
## Citing the Project
To cite this repository in publications:
```bibtex
@software{fancy_gym,
title = {Fancy Gym},
author = {Otto, Fabian and Celik, Onur and Roth, Dominik and Zhou, Hongyi},
abstract = {Fancy Gym: Unifying interface for various RL benchmarks with support for Black Box approaches.},
url = {https://github.com/ALRhub/fancy_gym},
organization = {Autonomous Learning Robots Lab (ALR) at KIT},
}
```
## Icon Attribution
The icon is based on the [Gymnasium](https://github.com/Farama-Foundation/Gymnasium) icon as can be found [here](https://gymnasium.farama.org/_static/img/gymnasium_black.svg).