322 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			322 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Iterable, Union
 | |
| 
 | |
| import gym
 | |
| import matplotlib.pyplot as plt
 | |
| import numpy as np
 | |
| from gym.utils import seeding
 | |
| 
 | |
| from alr_envs.classic_control.utils import check_self_collision
 | |
| from alr_envs.utils.mps.mp_environments import MPEnv
 | |
| 
 | |
| 
 | |
| class ViaPointReacher(MPEnv):
 | |
| 
 | |
|     def __init__(self, n_links, random_start: bool = True, via_target: Union[None, Iterable] = None,
 | |
|                  target: Union[None, Iterable] = None, allow_self_collision=False, collision_penalty=1000):
 | |
| 
 | |
|         self.n_links = n_links
 | |
|         self.link_lengths = np.ones((n_links, 1))
 | |
| 
 | |
|         self.random_start = random_start
 | |
| 
 | |
|         # provided initial parameters
 | |
|         self._target = target  # provided target value
 | |
|         self._via_target = via_target  # provided via point target value
 | |
| 
 | |
|         # temp container for current env state
 | |
|         self._via_point = np.ones(2)
 | |
|         self._goal = np.array((n_links, 0))
 | |
| 
 | |
|         # collision
 | |
|         self.allow_self_collision = allow_self_collision
 | |
|         self.collision_penalty = collision_penalty
 | |
| 
 | |
|         # state
 | |
|         self._joints = None
 | |
|         self._joint_angles = None
 | |
|         self._angle_velocity = None
 | |
|         self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
 | |
|         self._start_vel = np.zeros(self.n_links)
 | |
|         self.weight_matrix_scale = 1
 | |
| 
 | |
|         self.dt = 0.01
 | |
| 
 | |
|         action_bound = np.pi * np.ones((self.n_links,))
 | |
|         state_bound = np.hstack([
 | |
|             [np.pi] * self.n_links,  # cos
 | |
|             [np.pi] * self.n_links,  # sin
 | |
|             [np.inf] * self.n_links,  # velocity
 | |
|             [np.inf] * 2,  # x-y coordinates of via point distance
 | |
|             [np.inf] * 2,  # x-y coordinates of target distance
 | |
|             [np.inf]  # env steps, because reward start after n steps
 | |
|         ])
 | |
|         self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
 | |
|         self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
 | |
| 
 | |
|         # containers for plotting
 | |
|         self.metadata = {'render.modes': ["human", "partial"]}
 | |
|         self.fig = None
 | |
| 
 | |
|         self._steps = 0
 | |
|         self.seed()
 | |
| 
 | |
|     def step(self, action: np.ndarray):
 | |
|         """
 | |
|         a single step with an action in joint velocity space
 | |
|         """
 | |
|         vel = action
 | |
|         self._angle_velocity = vel
 | |
|         self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
 | |
|         self._update_joints()
 | |
| 
 | |
|         acc = (vel - self._angle_velocity) / self.dt
 | |
|         reward, info = self._get_reward(acc)
 | |
| 
 | |
|         info.update({"is_collided": self._is_collided})
 | |
| 
 | |
|         self._steps += 1
 | |
|         done = self._is_collided
 | |
| 
 | |
|         return self._get_obs().copy(), reward, done, info
 | |
| 
 | |
|     def reset(self):
 | |
| 
 | |
|         if self.random_start:
 | |
|             # Maybe change more than dirst seed
 | |
|             first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
 | |
|             self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
 | |
|             self._start_pos = self._joint_angles.copy()
 | |
|         else:
 | |
|             self._joint_angles = self._start_pos
 | |
| 
 | |
|         self._generate_goal()
 | |
| 
 | |
|         self._angle_velocity = self._start_vel
 | |
|         self._joints = np.zeros((self.n_links + 1, 2))
 | |
|         self._update_joints()
 | |
|         self._steps = 0
 | |
| 
 | |
|         return self._get_obs().copy()
 | |
| 
 | |
|     def _generate_goal(self):
 | |
|         # TODO: Maybe improve this later, this can yield quite a lot of invalid settings
 | |
| 
 | |
|         total_length = np.sum(self.link_lengths)
 | |
| 
 | |
|         # rejection sampled point in inner circle with 0.5*Radius
 | |
|         if self._via_target is None:
 | |
|             via_target = np.array([total_length, total_length])
 | |
|             while np.linalg.norm(via_target) >= 0.5 * total_length:
 | |
|                 via_target = self.np_random.uniform(low=-0.5 * total_length, high=0.5 * total_length, size=2)
 | |
|         else:
 | |
|             via_target = np.copy(self._via_target)
 | |
| 
 | |
|         # rejection sampled point in outer circle
 | |
|         if self._target is None:
 | |
|             goal = np.array([total_length, total_length])
 | |
|             while np.linalg.norm(goal) >= total_length or np.linalg.norm(goal) <= 0.5 * total_length:
 | |
|                 goal = self.np_random.uniform(low=-total_length, high=total_length, size=2)
 | |
|         else:
 | |
|             goal = np.copy(self._target)
 | |
| 
 | |
|         self._via_target = via_target
 | |
|         self._goal = goal
 | |
| 
 | |
|     def _update_joints(self):
 | |
|         """
 | |
|         update _joints to get new end effector position. The other links are only required for rendering.
 | |
|         Returns:
 | |
| 
 | |
|         """
 | |
|         line_points_in_taskspace = self.get_forward_kinematics(num_points_per_link=20)
 | |
| 
 | |
|         self._joints[1:, 0] = self._joints[0, 0] + line_points_in_taskspace[:, -1, 0]
 | |
|         self._joints[1:, 1] = self._joints[0, 1] + line_points_in_taskspace[:, -1, 1]
 | |
| 
 | |
|         self_collision = False
 | |
| 
 | |
|         if not self.allow_self_collision:
 | |
|             self_collision = check_self_collision(line_points_in_taskspace)
 | |
|             if np.any(np.abs(self._joint_angles) > np.pi):
 | |
|                 self_collision = True
 | |
| 
 | |
|         self._is_collided = self_collision
 | |
| 
 | |
|     def _get_reward(self, acc):
 | |
|         success = False
 | |
|         reward = -np.inf
 | |
|         if not self._is_collided:
 | |
|             dist = np.inf
 | |
|             # return intermediate reward for via point
 | |
|             if self._steps == 100:
 | |
|                 dist = np.linalg.norm(self.end_effector - self._via_point)
 | |
|             # return reward in last time step for goal
 | |
|             elif self._steps == 199:
 | |
|                 dist = np.linalg.norm(self.end_effector - self._goal)
 | |
| 
 | |
|             success = dist < 0.005
 | |
|         else:
 | |
|             # Episode terminates when colliding, hence return reward
 | |
|             dist = np.linalg.norm(self.end_effector - self._goal)
 | |
|             reward = -self.collision_penalty
 | |
| 
 | |
|         reward -= dist ** 2
 | |
|         reward -= 5e-8 * np.sum(acc ** 2)
 | |
|         info = {"is_success": success}
 | |
| 
 | |
|         return reward, info
 | |
| 
 | |
|     def _get_obs(self):
 | |
|         theta = self._joint_angles
 | |
|         return np.hstack([
 | |
|             np.cos(theta),
 | |
|             np.sin(theta),
 | |
|             self._angle_velocity,
 | |
|             self.end_effector - self._via_point,
 | |
|             self.end_effector - self._goal,
 | |
|             self._steps
 | |
|         ])
 | |
| 
 | |
|     def get_forward_kinematics(self, num_points_per_link=1):
 | |
|         theta = self._joint_angles[:, None]
 | |
| 
 | |
|         intermediate_points = np.linspace(0, 1, num_points_per_link) if num_points_per_link > 1 else 1
 | |
| 
 | |
|         accumulated_theta = np.cumsum(theta, axis=0)
 | |
| 
 | |
|         endeffector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
 | |
| 
 | |
|         x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
 | |
|         y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
 | |
| 
 | |
|         endeffector[0, :, 0] = x[0, :]
 | |
|         endeffector[0, :, 1] = y[0, :]
 | |
| 
 | |
|         for i in range(1, self.n_links):
 | |
|             endeffector[i, :, 0] = x[i, :] + endeffector[i - 1, -1, 0]
 | |
|             endeffector[i, :, 1] = y[i, :] + endeffector[i - 1, -1, 1]
 | |
| 
 | |
|         return np.squeeze(endeffector + self._joints[0, :])
 | |
| 
 | |
|     def render(self, mode='human'):
 | |
|         goal_pos = self._goal.T
 | |
|         via_pos = self._via_point.T
 | |
| 
 | |
|         if self.fig is None:
 | |
|             # Create base figure once on the beginning. Afterwards only update
 | |
|             plt.ion()
 | |
|             self.fig = plt.figure()
 | |
|             ax = self.fig.add_subplot(1, 1, 1)
 | |
| 
 | |
|             # limits
 | |
|             lim = np.sum(self.link_lengths) + 0.5
 | |
|             ax.set_xlim([-lim, lim])
 | |
|             ax.set_ylim([-lim, lim])
 | |
| 
 | |
|             self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
 | |
|             self.goal_point_plot, = ax.plot(goal_pos[0], goal_pos[1], 'go')
 | |
|             self.via_point_plot, = ax.plot(via_pos[0], via_pos[1], 'gx')
 | |
| 
 | |
|             self.fig.show()
 | |
| 
 | |
|         self.fig.gca().set_title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
 | |
| 
 | |
|         if mode == "human":
 | |
|             # goal
 | |
|             if self._steps == 1:
 | |
|                 self.goal_point_plot.set_data(goal_pos[0], goal_pos[1])
 | |
|                 self.via_point_plot.set_data(via_pos[0], goal_pos[1])
 | |
| 
 | |
|             # arm
 | |
|             self.line.set_data(self._joints[:, 0], self._joints[:, 1])
 | |
| 
 | |
|             self.fig.canvas.draw()
 | |
|             self.fig.canvas.flush_events()
 | |
| 
 | |
|         elif mode == "partial":
 | |
|             if self._steps == 1:
 | |
|                 # fig, ax = plt.subplots()
 | |
|                 # Add the patch to the Axes
 | |
|                 [plt.gca().add_patch(rect) for rect in self.patches]
 | |
|                 # plt.pause(0.01)
 | |
| 
 | |
|             if self._steps % 20 == 0 or self._steps in [1, 199] or self._is_collided:
 | |
|                 # Arm
 | |
|                 plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k', alpha=self._steps / 200)
 | |
|                 # ax.plot(line_points_in_taskspace[:, 0, 0],
 | |
|                 #         line_points_in_taskspace[:, 0, 1],
 | |
|                 #         line_points_in_taskspace[:, -1, 0],
 | |
|                 #         line_points_in_taskspace[:, -1, 1], marker='o', color='k', alpha=t / 200)
 | |
| 
 | |
|                 lim = np.sum(self.link_lengths) + 0.5
 | |
|                 plt.xlim([-lim, lim])
 | |
|                 plt.ylim([-1.1, lim])
 | |
|                 plt.pause(0.01)
 | |
| 
 | |
|         elif mode == "final":
 | |
|             if self._steps == 199 or self._is_collided:
 | |
|                 # fig, ax = plt.subplots()
 | |
| 
 | |
|                 # Add the patch to the Axes
 | |
|                 [plt.gca().add_patch(rect) for rect in self.patches]
 | |
| 
 | |
|                 plt.xlim(-self.n_links, self.n_links), plt.ylim(-1, self.n_links)
 | |
|                 # Arm
 | |
|                 plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
 | |
| 
 | |
|                 plt.pause(0.01)
 | |
| 
 | |
|     @property
 | |
|     def active_obs(self):
 | |
|         return np.hstack([
 | |
|             [self.random_start] * self.n_links,  # cos
 | |
|             [self.random_start] * self.n_links,  # sin
 | |
|             [self.random_start] * self.n_links,  # velocity
 | |
|             [self._via_target is None] * 2,  # x-y coordinates of via point distance
 | |
|             [True] * 2,  # x-y coordinates of target distance
 | |
|             [False]  # env steps
 | |
|         ])
 | |
| 
 | |
|     @property
 | |
|     def start_pos(self) -> Union[float, int, np.ndarray]:
 | |
|         return self._start_pos
 | |
| 
 | |
|     @property
 | |
|     def goal_pos(self) -> Union[float, int, np.ndarray]:
 | |
|         raise ValueError("Goal position is not available and has to be learnt based on the environment.")
 | |
| 
 | |
|     def seed(self, seed=None):
 | |
|         self.np_random, seed = seeding.np_random(seed)
 | |
|         return [seed]
 | |
| 
 | |
|     @property
 | |
|     def end_effector(self):
 | |
|         return self._joints[self.n_links].T
 | |
| 
 | |
|     def close(self):
 | |
|         if self.fig is not None:
 | |
|             plt.close(self.fig)
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     nl = 5
 | |
|     render_mode = "human"  # "human" or "partial" or "final"
 | |
|     env = ViaPointReacher(n_links=nl, allow_self_collision=False)
 | |
|     env.reset()
 | |
|     env.render(mode=render_mode)
 | |
| 
 | |
|     for i in range(300):
 | |
|         # objective.load_result("/tmp/cma")
 | |
|         # test with random actions
 | |
|         ac = env.action_space.sample()
 | |
|         # ac[0] += np.pi/2
 | |
|         obs, rew, d, info = env.step(ac)
 | |
|         env.render(mode=render_mode)
 | |
| 
 | |
|         print(rew)
 | |
| 
 | |
|         if d:
 | |
|             break
 | |
| 
 | |
|     env.close()
 |