fancy_gym/alr_envs/alr/mujoco/hopper_jump/hopper_jump.py
2022-04-20 14:50:02 +02:00

158 lines
6.0 KiB
Python

from gym.envs.mujoco.hopper_v3 import HopperEnv
import numpy as np
MAX_EPISODE_STEPS_HOPPERJUMP = 250
class ALRHopperJumpEnv(HopperEnv):
"""
Initialization changes to normal Hopper:
- healthy_reward: 1.0 -> 0.1 -> 0
- healthy_angle_range: (-0.2, 0.2) -> (-float('inf'), float('inf'))
- healthy_z_range: (0.7, float('inf')) -> (0.5, float('inf'))
"""
def __init__(self,
xml_file='hopper.xml',
forward_reward_weight=1.0,
ctrl_cost_weight=1e-3,
healthy_reward=0.0,
penalty=0.0,
context=True,
terminate_when_unhealthy=True,
healthy_state_range=(-100.0, 100.0),
healthy_z_range=(0.5, float('inf')),
healthy_angle_range=(-float('inf'), float('inf')),
reset_noise_scale=5e-3,
exclude_current_positions_from_observation=True,
max_episode_steps=250):
self.current_step = 0
self.max_height = 0
self.max_episode_steps = max_episode_steps
self.penalty = penalty
self.goal = 0
self.context = context
self.exclude_current_positions_from_observation = exclude_current_positions_from_observation
super().__init__(xml_file, forward_reward_weight, ctrl_cost_weight, healthy_reward, terminate_when_unhealthy,
healthy_state_range, healthy_z_range, healthy_angle_range, reset_noise_scale,
exclude_current_positions_from_observation)
def step(self, action):
self.current_step += 1
self.do_simulation(action, self.frame_skip)
height_after = self.get_body_com("torso")[2]
self.max_height = max(height_after, self.max_height)
ctrl_cost = self.control_cost(action)
costs = ctrl_cost
done = False
if self.current_step >= self.max_episode_steps:
hight_goal_distance = -10*np.linalg.norm(self.max_height - self.goal) if self.context else self.max_height
healthy_reward = 0 if self.context else self.healthy_reward * self.current_step
height_reward = self._forward_reward_weight * hight_goal_distance # maybe move reward calculation into if structure and define two different _forward_reward_weight variables for context and episodic seperatley
rewards = height_reward + healthy_reward
else:
# penalty for wrong start direction of first two joints; not needed, could be removed
rewards = ((action[:2] > 0) * self.penalty).sum() if self.current_step < 10 else 0
observation = self._get_obs()
reward = rewards - costs
info = {
'height' : height_after,
'max_height': self.max_height,
'goal' : self.goal
}
return observation, reward, done, info
def _get_obs(self):
return np.append(super()._get_obs(), self.goal)
def reset(self):
self.goal = np.random.uniform(1.4, 2.3, 1) # 1.3 2.3
self.max_height = 0
self.current_step = 0
return super().reset()
# overwrite reset_model to make it deterministic
def reset_model(self):
noise_low = -self._reset_noise_scale
noise_high = self._reset_noise_scale
qpos = self.init_qpos # + self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nq)
qvel = self.init_qvel # + self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nv)
self.set_state(qpos, qvel)
observation = self._get_obs()
return observation
class ALRHopperJumpRndmPosEnv(ALRHopperJumpEnv):
def __init__(self, max_episode_steps=250):
super(ALRHopperJumpRndmPosEnv, self).__init__(exclude_current_positions_from_observation=False,
reset_noise_scale=5e-1,
max_episode_steps=max_episode_steps)
def reset_model(self):
noise_low = -self._reset_noise_scale
noise_high = self._reset_noise_scale
qpos = self.init_qpos + self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nq)
qvel = self.init_qvel #+ self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nv)
self.set_state(qpos, qvel)
observation = self._get_obs()
return observation
def step(self, action):
self.current_step += 1
self.do_simulation(action, self.frame_skip)
height_after = self.get_body_com("torso")[2]
self.max_height = max(height_after, self.max_height)
ctrl_cost = self.control_cost(action)
costs = ctrl_cost
done = False
if self.current_step >= self.max_episode_steps:
healthy_reward = 0
height_reward = self._forward_reward_weight * self.max_height # maybe move reward calculation into if structure and define two different _forward_reward_weight variables for context and episodic seperatley
rewards = height_reward + healthy_reward
else:
# penalty for wrong start direction of first two joints; not needed, could be removed
rewards = ((action[:2] > 0) * self.penalty).sum() if self.current_step < 10 else 0
observation = self._get_obs()
reward = rewards - costs
info = {
'height': height_after,
'max_height': self.max_height,
'goal': self.goal
}
return observation, reward, done, info
if __name__ == '__main__':
render_mode = "human" # "human" or "partial" or "final"
env = ALRHopperJumpEnv()
obs = env.reset()
for i in range(2000):
# objective.load_result("/tmp/cma")
# test with random actions
ac = env.action_space.sample()
obs, rew, d, info = env.step(ac)
if i % 10 == 0:
env.render(mode=render_mode)
if d:
print('After ', i, ' steps, done: ', d)
env.reset()
env.close()